Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )最新文献

筛选
英文 中文
Neural Clinical Event Sequence Prediction through Personalized Online Adaptive Learning. 基于个性化在线自适应学习的神经临床事件序列预测。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2021-06-01 Epub Date: 2021-06-08 DOI: 10.1007/978-3-030-77211-6_20
Jeong Min Lee, Milos Hauskrecht
{"title":"Neural Clinical Event Sequence Prediction through Personalized Online Adaptive Learning.","authors":"Jeong Min Lee,&nbsp;Milos Hauskrecht","doi":"10.1007/978-3-030-77211-6_20","DOIUrl":"10.1007/978-3-030-77211-6_20","url":null,"abstract":"<p><p>Clinical event sequences consist of thousands of clinical events that represent records of patient care in time. Developing accurate prediction models for such sequences is of a great importance for defining representations of a patient state and for improving patient care. One important challenge of learning a good predictive model of clinical sequences is patient-specific variability. Based on underlying clinical complications, each patient's sequence may consist of different sets of clinical events. However, population-based models learned from such sequences may not accurately predict patient-specific dynamics of event sequences. To address the problem, we develop a new adaptive event sequence prediction framework that learns to adjust its prediction for individual patients through an online model update.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12721 ","pages":"175-186"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232901/pdf/nihms-1712979.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39135177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Detection of Junctional Ectopic Tachycardia by Central Venous Pressure. 中心静脉压检测交界性异位心动过速。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2021-06-01 Epub Date: 2021-06-08 DOI: 10.1007/978-3-030-77211-6_29
Xin Tan, Yanwan Dai, Ahmed Imtiaz Humayun, Haoze Chen, Genevera I Allen, Parag N Jain
{"title":"Detection of Junctional Ectopic Tachycardia by Central Venous Pressure.","authors":"Xin Tan,&nbsp;Yanwan Dai,&nbsp;Ahmed Imtiaz Humayun,&nbsp;Haoze Chen,&nbsp;Genevera I Allen,&nbsp;Parag N Jain","doi":"10.1007/978-3-030-77211-6_29","DOIUrl":"https://doi.org/10.1007/978-3-030-77211-6_29","url":null,"abstract":"<p><p>Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. This signal waveform is commonly collected in clinical settings, and yet there has been limited discussion of using this data for detecting arrhythmia and other cardiac events. In this paper, we develop a signal processing and feature engineering pipeline for CVP waveform analysis. Through a case study on pediatric junctional ectopic tachycardia (JET), we show that our extracted CVP features reliably detect JET with comparable results to the more commonly used electrocardiogram (ECG) features. This machine learning pipeline can thus improve the clinical diagnosis and ICU monitoring of arrhythmia. It also corroborates and complements the ECG-based diagnosis, especially when the ECG measurements are unavailable or corrupted.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12721 ","pages":"258-262"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/f0/nihms-1715308.PMC8281976.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39200415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Prediction of Low-Prior Clinical Events with Simultaneous General Patient-State Representation Learning. 同时一般患者状态表征学习改善低先验临床事件预测。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2021-06-01 Epub Date: 2021-06-08 DOI: 10.1007/978-3-030-77211-6_57
Matthew Barren, Milos Hauskrecht
{"title":"Improving Prediction of Low-Prior Clinical Events with Simultaneous General Patient-State Representation Learning.","authors":"Matthew Barren,&nbsp;Milos Hauskrecht","doi":"10.1007/978-3-030-77211-6_57","DOIUrl":"10.1007/978-3-030-77211-6_57","url":null,"abstract":"<p><p>Low-prior targets are common among many important clinical events, which introduces the challenge of having enough data to support learning of their predictive models. Many prior works have addressed this problem by first building a general patient-state representation model, and then adapting it to a new low-prior prediction target. In this schema, there is potential for the predictive performance to be hindered by the misalignment between the general patient-state model and the target task. To overcome this challenge, we propose a new method that simultaneously optimizes a shared model through multi-task learning of both the low-prior supervised target and general purpose patient-state representation (GPSR). More specifically, our method improves prediction performance of a low-prior task by jointly optimizing a shared model that combines the loss of the target event and a broad range of generic clinical events. We study the approach in the context of Recurrent Neural Networks (RNNs). Through extensive experiments on multiple clinical event targets using MIMIC-III [8] data, we show that the inclusion of general patient-state representation tasks during model training improves the prediction of individual low-prior targets.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12721 ","pages":"479-490"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301230/pdf/nihms-1713021.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39221679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Probabilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational Diabetes. 一种概率方法提取妊娠期糖尿病早期预测的定性知识。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2021-06-01 Epub Date: 2021-06-08 DOI: 10.1007/978-3-030-77211-6_59
Athresh Karanam, Alexander L Hayes, Harsha Kokel, David M Haas, Predrag Radivojac, Sriraam Natarajan
{"title":"A Probabilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational Diabetes.","authors":"Athresh Karanam,&nbsp;Alexander L Hayes,&nbsp;Harsha Kokel,&nbsp;David M Haas,&nbsp;Predrag Radivojac,&nbsp;Sriraam Natarajan","doi":"10.1007/978-3-030-77211-6_59","DOIUrl":"https://doi.org/10.1007/978-3-030-77211-6_59","url":null,"abstract":"<p><p>Qualitative influence statements are often provided a priori to guide learning; we answer a challenging reverse task and automatically extract them from a learned probabilistic model. We apply our Qualitative Knowledge Extraction method toward early prediction of gestational diabetes on clinical study data. Our empirical results demonstrate that the extracted rules are both interpretable and valid.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12721 ","pages":"497-502"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274548/pdf/nihms-1713307.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39181642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Predicting Kidney Transplant Survival using Multiple Feature Representations for HLAs 利用hla的多特征表示预测肾移植生存
Mohammadreza Nemati, Haonan Zhang, Michael Sloma, D. Bekbolsynov, Hong Wang, S. Stepkowski, Kevin S. Xu
{"title":"Predicting Kidney Transplant Survival using Multiple Feature Representations for HLAs","authors":"Mohammadreza Nemati, Haonan Zhang, Michael Sloma, D. Bekbolsynov, Hong Wang, S. Stepkowski, Kevin S. Xu","doi":"10.1007/978-3-030-77211-6_6","DOIUrl":"https://doi.org/10.1007/978-3-030-77211-6_6","url":null,"abstract":"","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"11 1","pages":"51-60"},"PeriodicalIF":0.0,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84481214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Diagnostic Prediction with Sequence-of-sets Representation Learning for Clinical Events. 临床事件的集合序列表示学习诊断预测。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2020-08-01 Epub Date: 2020-09-26 DOI: 10.1007/978-3-030-59137-3_31
Tianran Zhang, Muhao Chen, Alex A T Bui
{"title":"Diagnostic Prediction with Sequence-of-sets Representation Learning for Clinical Events.","authors":"Tianran Zhang,&nbsp;Muhao Chen,&nbsp;Alex A T Bui","doi":"10.1007/978-3-030-59137-3_31","DOIUrl":"https://doi.org/10.1007/978-3-030-59137-3_31","url":null,"abstract":"<p><p>Electronic health records (EHRs) contain both ordered and unordered chronologies of clinical events that occur during a patient encounter. However, during data preprocessing steps, many predictive models impose a predefined order on unordered clinical events sets (e.g., alphabetical, natural order from the chart, etc.), which is potentially incompatible with the temporal nature of the sequence and predictive task. To address this issue, we propose DPSS, which seeks to capture each patient's clinical event records as sequences of event sets. For each clinical event set, we assume that the predictive model should be invariant to the order of concurrent events and thus employ a novel permutation sampling mechanism. This paper evaluates the use of this permuted sampling method given different data-driven models for predicting a heart failure (HF) diagnosis in subsequent patient visits. Experimental results using the MIMIC-III dataset show that the permutation sampling mechanism offers improved discriminative power based on the area under the receiver operating curve (AUROC) and precision-recall curve (pr-AUC) metrics as HF diagnosis prediction becomes more robust to different data ordering schemes.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12299 ","pages":"348-358"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143801/pdf/nihms-1698603.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38949682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnostic Prediction with Sequence-of-setsRepresentation Learning for Clinical Events 用集合序列表示学习进行临床事件诊断预测
Tianran Zhang, Muhao Chen, A. Bui
{"title":"Diagnostic Prediction with Sequence-of-setsRepresentation Learning for Clinical Events","authors":"Tianran Zhang, Muhao Chen, A. Bui","doi":"10.1101/2020.08.03.20167569","DOIUrl":"https://doi.org/10.1101/2020.08.03.20167569","url":null,"abstract":"Electronic health records (EHRs) contain both ordered and unordered chronologies of clinical events that occur during a patient encounter. However, during data preprocessing steps, many predictive models impose a predefined order on unordered clinical events sets (e.g., alphabetical, natural order from the chart, etc.), which is potentially incompatible with the temporal nature of the sequence and predictive task. To address this issue, we proposeDPSS, which seeks to capture each patient's clinical event records as sequences of event sets. Foreach clinical event set, we assume that the predictive model should be invariant to the order of concurrent events and thus employ a novel permutation sampling mechanism. This paper evaluates the use of this permuted sampling method given different data-driven models for predicting a heart failure (HF) diagnosis in sub-sequent patient visits. Experimental results using the MIMIC-III dataset show that the permutation sampling mechanism offers improved discriminative power based on the area under the receiver operating curve (AUROC) and precision-recall curve (pr-AUC) metrics as HF diagnosis prediction becomes more robust to different data ordering schemes.","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"8 1","pages":"348-358"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76744700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Recent Context-Aware LSTM for Clinical Event Time-Series Prediction 近期用于临床事件时间序列预测的上下文感知LSTM
Jeong Min Lee, M. Hauskrecht
{"title":"Recent Context-Aware LSTM for Clinical Event Time-Series Prediction","authors":"Jeong Min Lee, M. Hauskrecht","doi":"10.1007/978-3-030-21642-9_3","DOIUrl":"https://doi.org/10.1007/978-3-030-21642-9_3","url":null,"abstract":"","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"10 1","pages":"13-23"},"PeriodicalIF":0.0,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81994515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Predicting patient's diagnoses and diagnostic categories from clinical-events in EHR data. 根据EHR数据中的临床事件预测患者的诊断和诊断类别。
Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- ) Pub Date : 2019-06-01 Epub Date: 2019-05-30 DOI: 10.1007/978-3-030-21642-9_17
Seyedsalim Malakouti, Milos Hauskrecht
{"title":"Predicting patient's diagnoses and diagnostic categories from clinical-events in EHR data.","authors":"Seyedsalim Malakouti,&nbsp;Milos Hauskrecht","doi":"10.1007/978-3-030-21642-9_17","DOIUrl":"https://doi.org/10.1007/978-3-030-21642-9_17","url":null,"abstract":"<p><p>In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient's diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"11526 ","pages":"125-130"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-21642-9_17","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41221619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Mining Compact Predictive Pattern Sets Using Classification Model 利用分类模型挖掘紧凑预测模式集
M. Mantovani, Combi Carlo, M. Hauskrecht
{"title":"Mining Compact Predictive Pattern Sets Using Classification Model","authors":"M. Mantovani, Combi Carlo, M. Hauskrecht","doi":"10.1007/978-3-030-21642-9_49","DOIUrl":"https://doi.org/10.1007/978-3-030-21642-9_49","url":null,"abstract":"","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"2 1","pages":"386-396"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81919423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信