{"title":"根据EHR数据中的临床事件预测患者的诊断和诊断类别。","authors":"Seyedsalim Malakouti, Milos Hauskrecht","doi":"10.1007/978-3-030-21642-9_17","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient's diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"11526 ","pages":"125-130"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-21642-9_17","citationCount":"16","resultStr":"{\"title\":\"Predicting patient's diagnoses and diagnostic categories from clinical-events in EHR data.\",\"authors\":\"Seyedsalim Malakouti, Milos Hauskrecht\",\"doi\":\"10.1007/978-3-030-21642-9_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient's diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.</p>\",\"PeriodicalId\":72303,\"journal\":{\"name\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"volume\":\"11526 \",\"pages\":\"125-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-21642-9_17\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-21642-9_17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-21642-9_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting patient's diagnoses and diagnostic categories from clinical-events in EHR data.
In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient's diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.