根据EHR数据中的临床事件预测患者的诊断和诊断类别。

Seyedsalim Malakouti, Milos Hauskrecht
{"title":"根据EHR数据中的临床事件预测患者的诊断和诊断类别。","authors":"Seyedsalim Malakouti,&nbsp;Milos Hauskrecht","doi":"10.1007/978-3-030-21642-9_17","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient's diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"11526 ","pages":"125-130"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-21642-9_17","citationCount":"16","resultStr":"{\"title\":\"Predicting patient's diagnoses and diagnostic categories from clinical-events in EHR data.\",\"authors\":\"Seyedsalim Malakouti,&nbsp;Milos Hauskrecht\",\"doi\":\"10.1007/978-3-030-21642-9_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient's diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.</p>\",\"PeriodicalId\":72303,\"journal\":{\"name\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"volume\":\"11526 \",\"pages\":\"125-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-21642-9_17\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-21642-9_17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-21642-9_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们开发和研究了基于潜在语义索引的机器学习模型,该模型能够根据患者电子健康记录(EHR)中的结构化临床数据自动将诊断和诊断类别分配给患者。这些模型可以用于出院时根据结构化EHR数据对患者诊断进行自动编码,也可以用于支持患者病情的动态诊断和总结。我们研究了我们的诊断模型在MIMIC-III EHR数据上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting patient's diagnoses and diagnostic categories from clinical-events in EHR data.

In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient's diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信