中心静脉压检测交界性异位心动过速。

Xin Tan, Yanwan Dai, Ahmed Imtiaz Humayun, Haoze Chen, Genevera I Allen, Parag N Jain
{"title":"中心静脉压检测交界性异位心动过速。","authors":"Xin Tan,&nbsp;Yanwan Dai,&nbsp;Ahmed Imtiaz Humayun,&nbsp;Haoze Chen,&nbsp;Genevera I Allen,&nbsp;Parag N Jain","doi":"10.1007/978-3-030-77211-6_29","DOIUrl":null,"url":null,"abstract":"<p><p>Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. This signal waveform is commonly collected in clinical settings, and yet there has been limited discussion of using this data for detecting arrhythmia and other cardiac events. In this paper, we develop a signal processing and feature engineering pipeline for CVP waveform analysis. Through a case study on pediatric junctional ectopic tachycardia (JET), we show that our extracted CVP features reliably detect JET with comparable results to the more commonly used electrocardiogram (ECG) features. This machine learning pipeline can thus improve the clinical diagnosis and ICU monitoring of arrhythmia. It also corroborates and complements the ECG-based diagnosis, especially when the ECG measurements are unavailable or corrupted.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12721 ","pages":"258-262"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/f0/nihms-1715308.PMC8281976.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection of Junctional Ectopic Tachycardia by Central Venous Pressure.\",\"authors\":\"Xin Tan,&nbsp;Yanwan Dai,&nbsp;Ahmed Imtiaz Humayun,&nbsp;Haoze Chen,&nbsp;Genevera I Allen,&nbsp;Parag N Jain\",\"doi\":\"10.1007/978-3-030-77211-6_29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. This signal waveform is commonly collected in clinical settings, and yet there has been limited discussion of using this data for detecting arrhythmia and other cardiac events. In this paper, we develop a signal processing and feature engineering pipeline for CVP waveform analysis. Through a case study on pediatric junctional ectopic tachycardia (JET), we show that our extracted CVP features reliably detect JET with comparable results to the more commonly used electrocardiogram (ECG) features. This machine learning pipeline can thus improve the clinical diagnosis and ICU monitoring of arrhythmia. It also corroborates and complements the ECG-based diagnosis, especially when the ECG measurements are unavailable or corrupted.</p>\",\"PeriodicalId\":72303,\"journal\":{\"name\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"volume\":\"12721 \",\"pages\":\"258-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/f0/nihms-1715308.PMC8281976.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-77211-6_29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-77211-6_29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中心静脉压(CVP)是靠近心脏右心房的腔静脉的血压。该信号波形通常在临床环境中收集,但使用该数据检测心律失常和其他心脏事件的讨论有限。在本文中,我们开发了一个用于CVP波形分析的信号处理和特征工程管道。通过对儿童交界性异位心动过速(JET)的病例研究,我们表明我们提取的CVP特征可靠地检测JET,其结果与更常用的心电图(ECG)特征相当。这种机器学习流水线可以提高心律失常的临床诊断和ICU监护。它还证实和补充了基于心电图的诊断,特别是当心电图测量不可用或损坏时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detection of Junctional Ectopic Tachycardia by Central Venous Pressure.

Detection of Junctional Ectopic Tachycardia by Central Venous Pressure.

Detection of Junctional Ectopic Tachycardia by Central Venous Pressure.

Detection of Junctional Ectopic Tachycardia by Central Venous Pressure.

Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. This signal waveform is commonly collected in clinical settings, and yet there has been limited discussion of using this data for detecting arrhythmia and other cardiac events. In this paper, we develop a signal processing and feature engineering pipeline for CVP waveform analysis. Through a case study on pediatric junctional ectopic tachycardia (JET), we show that our extracted CVP features reliably detect JET with comparable results to the more commonly used electrocardiogram (ECG) features. This machine learning pipeline can thus improve the clinical diagnosis and ICU monitoring of arrhythmia. It also corroborates and complements the ECG-based diagnosis, especially when the ECG measurements are unavailable or corrupted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信