Optical Memory and Neural Networks最新文献

筛选
英文 中文
Assault Type Detection in WSN Based on Modified DBSCAN with Osprey Optimization Using Hybrid Classifier LSTM with XGBOOST for Military Sector 基于改进的 DBSCAN 和 Osprey 优化的 WSN 攻击类型检测,使用混合分类器 LSTM 和 XGBOOST,用于军事领域
IF 1
Optical Memory and Neural Networks Pub Date : 2024-03-25 DOI: 10.3103/S1060992X24010089
R. Preethi
{"title":"Assault Type Detection in WSN Based on Modified DBSCAN with Osprey Optimization Using Hybrid Classifier LSTM with XGBOOST for Military Sector","authors":"R. Preethi","doi":"10.3103/S1060992X24010089","DOIUrl":"10.3103/S1060992X24010089","url":null,"abstract":"<p>Military tasks constitute the most important and significant applications of Wireless sensor networks (WSNs). In military, Sensor node deployment increases activities, efficient operation, saves loss of life, and protects national sovereignty. Usually, the main difficulties in military missions are energy consumption and security in the network. Another major security issues are hacking or masquerade attack. To overcome the limitations, the proposed method modified DBSCAN with OSPREY optimization Algorithm (OOA) using hybrid classifier Long Short-Term Memory (LSTM) with Extreme Gradient Boosting (XGBOOST) to detect attack types in the WSN military sector for enhancing security. First, nodes are deployed and modified DBSCAN algorithm is used to cluster the nodes to reduce energy consumption. To select the cluster head optimally by using the OSPREY optimization Algorithm (OOA) based on small distance and high energy for transfer data between the base station and nodes. Hybrid LSTM-XGBOOST classifier utilized to learn the parameter and predict the four assault types such as scheduling, flooding, blackhole and grayhole assault. Classification and network metrics including Packet Delivery Ratio (PDR), Throughput, Average Residual Energy (ARE), Packet Loss Ratio (PLR), Accuracy and F1_score are used to evaluate the performance of the model. Performance results show that PDR of 94.12%, 3.2 Mbps throughput at 100 nodes, ARE of 8.94J, PLR of 5.88%, accuracy of 96.14%, and F1_score of 95.04% are achieved. Hence, the designed model for assault prediction types in WSN based on modified DBSCAN clustering with a hybrid classifier yields better results.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 1","pages":"53 - 71"},"PeriodicalIF":1.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Remarks on Possible Superconductivity of Composition Pb9CuP6O25 关于 Pb9CuP6O25 成分可能具有超导性的一些评论
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070020
P. Abramian, A. Kuzanyan, V. Nikoghosyan, S. Teknowijoyo, A. Gulian
{"title":"Some Remarks on Possible Superconductivity of Composition Pb9CuP6O25","authors":"P. Abramian, A. Kuzanyan, V. Nikoghosyan, S. Teknowijoyo, A. Gulian","doi":"10.3103/s1060992x23070020","DOIUrl":"https://doi.org/10.3103/s1060992x23070020","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A material called LK-99, a modified-lead apatite crystal structure with the composition Pb<sub>10 – <i>x</i></sub>Cu<sub><i>x</i></sub>(PO<sub>4</sub>)<sub>6</sub>O (0.9 &lt; <i>x</i> &lt; 1.1) has been reported to be an above-room-temperature superconductor at ambient pressure. It is hard to expect that it will be straightforward for other groups to reproduce the original results. We provide here some remarks which may be helpful for a success.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"35 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconducting Polycrystalline Rhenium Films Deposited at Room Temperature 室温沉积的超导多晶铼薄膜
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070184
S. Teknowijoyo, A. Gulian
{"title":"Superconducting Polycrystalline Rhenium Films Deposited at Room Temperature","authors":"S. Teknowijoyo, A. Gulian","doi":"10.3103/s1060992x23070184","DOIUrl":"https://doi.org/10.3103/s1060992x23070184","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We report on magnetron deposition of thin superconducting rhenium films on sapphire substrates. During the deposition, substrates were held at ambient temperature. Critical temperature of the films is <i>T</i><sub><i>c</i></sub> ~ 3.6 K. Films have polycrystalline structure, and grazing incidence X-ray diffractometry indicates that crystalline lattice parameters are somewhat larger compared to the bulk ones. Magnetoresistive and AC/DC susceptibilities allowed us to determine <i>H</i><sub><i>c</i>1</sub> and <i>H</i><sub><i>c</i>2</sub> of these films, as well as estimate coherence length ξ(0) and magnetic penetration depth λ<sub><i>L</i></sub>(0). We also provide information on surface morphology of these films.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"328 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mirrorless Lasing: A Theoretical Perspective 无反光镜蚀刻:理论视角
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070172
A. Ramaswamy, J. Chathanathil, D. Kanta, E. Klinger, A. Papoyan, S. Shmavonyan, A. Khanbekyan, A. Wickenbrock, D. Budker, S. A. Malinovskaya
{"title":"Mirrorless Lasing: A Theoretical Perspective","authors":"A. Ramaswamy, J. Chathanathil, D. Kanta, E. Klinger, A. Papoyan, S. Shmavonyan, A. Khanbekyan, A. Wickenbrock, D. Budker, S. A. Malinovskaya","doi":"10.3103/s1060992x23070172","DOIUrl":"https://doi.org/10.3103/s1060992x23070172","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Mirrorless lasing has been a topic of particular interest for about a decade due to promising new horizons for quantum science and applications. In this work, we review first-principles theory that describes this phenomenon, and discuss degenerate mirrorless lasing in a vapor of Rb atoms, the mechanisms of amplification of light generated in the medium with population inversion between magnetic sublevels within the <span>({{D}_{2}})</span> line, and challenges associated with experimental realization.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"8 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing: Equation One 传感:等式一
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070056
D. Budker, M. G. Kozlov
{"title":"Sensing: Equation One","authors":"D. Budker, M. G. Kozlov","doi":"10.3103/s1060992x23070056","DOIUrl":"https://doi.org/10.3103/s1060992x23070056","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Spin-projection noise sets a limit for the sensitivity of spin-based magnetometers and experiments searching for parity- and time-reversal-invariance-violating dipole moments. The limit is described by a simple equation that appears to have universal applicability.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"29 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Bloch-Band Dispersion on the Quantized Transport in a Topological Thouless Pump 布洛赫带色散对无拓扑泵中量化传输的影响
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070226
R. G. Unanyan, M. Fleischhauer
{"title":"Effect of Bloch-Band Dispersion on the Quantized Transport in a Topological Thouless Pump","authors":"R. G. Unanyan, M. Fleischhauer","doi":"10.3103/s1060992x23070226","DOIUrl":"https://doi.org/10.3103/s1060992x23070226","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We study the spreading of an initially localized wave packet of a particle hopping on a one-dimensional superlattice during a cycle of a topological Thouless pump. Two contributions to the dispersion of the adiabatic pumping process are identified: a dynamical part and a geometrical part. The magnitude of the dynamical contribution to the spreading depends on the dispersion of the adiabatic transfer state and the cycle time. Unlike the dynamical one, the geometrical contribution does not depend on the duration of the adiabatic process and can be made much smaller than the lattice spacing. We show that as the adiabaticity is enhanced by prolonging the period of the pumping process, the uncertainty in coordinate space is increased linearly with the adiabaticity parameter. We propose a mechanism to smoothen the energy surface of the adiabatic transfer state to reduce the spreading of the spatial distribution of the transported particle. This diminishes or even eliminates (up to the geometric contribution) the dispersion of the coordinate during the transport process.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"25 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adiabatic States and Suppression of Dissipative Processes 绝热状态与耗散过程的抑制
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x2307007x
E. A. Gazazyan, G. G. Grigoryan
{"title":"Adiabatic States and Suppression of Dissipative Processes","authors":"E. A. Gazazyan, G. G. Grigoryan","doi":"10.3103/s1060992x2307007x","DOIUrl":"https://doi.org/10.3103/s1060992x2307007x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We consider adiabatic interaction of quantum systems with electromagnetic field in the presence of various dissipation processes. As it is known that in the presence of large intermediate detunings any n-level system can be reduced to an effective two-level system, we chose the two-level model as the basic model for a detailed analytical study. We demonstrate the possibility of reducing losses due to dephasing and non-adiabatic corrections by choosing an appropriate design of time-dependent interaction parameters. Simple analytical expressions are derived for both cold and hot atomic ensembles. The results obtained for the two-level system are applied to a three-level system by using the method of adiabatic elimination. Efficient population transfer is shown despite the relatively high dephasing rates.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospects for Using Thermoelectric Single-Photon Detectors in Quantum Information Systems and Astrophysics 在量子信息系统和天体物理学中使用热电单光子探测器的前景
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070111
A. A. Kuzanyan, A. S. Kuzanyan, V. R. Nikoghosyan
{"title":"Prospects for Using Thermoelectric Single-Photon Detectors in Quantum Information Systems and Astrophysics","authors":"A. A. Kuzanyan, A. S. Kuzanyan, V. R. Nikoghosyan","doi":"10.3103/s1060992x23070111","DOIUrl":"https://doi.org/10.3103/s1060992x23070111","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we propose the design of detection pixels for single-photon detectors, consisting of absorber and heat sink (Bi-2223), thermoelectric sensors (CeB<sub>6</sub>), and an antireflection layer (SiO<sub>2</sub>) located on a dielectric substrate (Al<sub>2</sub>O<sub>3</sub>). We employ modeling and simulation to study the heat propagation processes in multi-layer detection pixels following the absorption of photons with energy ranging from 0.8 eV to 1 keV. Calculations are performed using the heat transfer equation within a limited volume, employing the three-dimensional matrix method. We calculate the temperature temporal variation in different areas of the detection pixels, as well as the voltage generated on the sensor, for various thicknesses and surfaces of the detection pixel layers. We determine the maximum signal value, time at which the maximum signal is reached, signal decay time, and the detector’s count rate. We derive equations for Phonon and Johnson noise in the three-layer detection pixel and calculate the total noise. Based on the data obtained, we propose ways to improve the signal-to-noise ratio.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"29 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Wavelength Optics of a Pair-Interacting Electron Gas in a Lens-Shaped Quantum Dot: Two-Dimensional Moshinsky Model 透镜形量子点中成对相互作用电子气体的长波光学:二维莫辛斯基模型
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070123
M. A. Mkrtchyan, E. M. Kazaryan, H. A. Sarkisyan, M. Y. Vinnichenko, D. A. Firsov
{"title":"Long-Wavelength Optics of a Pair-Interacting Electron Gas in a Lens-Shaped Quantum Dot: Two-Dimensional Moshinsky Model","authors":"M. A. Mkrtchyan, E. M. Kazaryan, H. A. Sarkisyan, M. Y. Vinnichenko, D. A. Firsov","doi":"10.3103/s1060992x23070123","DOIUrl":"https://doi.org/10.3103/s1060992x23070123","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An analytical model of a pair-interacting electron gas localized in an asymmetric biconvex strongly oblate lens-shaped GaAs quantum dot has been considered. The wave functions and the energy spectrum of the system have been calculated in the frame of the exactly solvable two-dimensional Moshinsky model. The character of long-wavelength transitions between the center of mass levels of the system have been obtained when the generalized Kohn’s theorem is realized.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"29 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programmable Quantum Gate Operations Using Qutrit Quantum Dots 使用 Qutrit 量子点的可编程量子门操作
IF 0.9
Optical Memory and Neural Networks Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070160
E. A. Pogosyan, E. A. Gazazyan
{"title":"Programmable Quantum Gate Operations Using Qutrit Quantum Dots","authors":"E. A. Pogosyan, E. A. Gazazyan","doi":"10.3103/s1060992x23070160","DOIUrl":"https://doi.org/10.3103/s1060992x23070160","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this article has been achieved that the utilization of quantum programmable logic elements opens new possibilities in cryptography, where the ability to process information irreversibly contributes to enhanced security measures. Furthermore, the development of such elements fosters the advancement of complex computational architectures, facilitating the creation of sophisticated and highly efficient systems.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"11 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信