{"title":"Divergence Parametric Smoothing in Image Compression Algorithms","authors":"M. V. Gashnikov","doi":"10.3103/S1060992X24700012","DOIUrl":null,"url":null,"abstract":"<p>The paper elaborates on methods of digital image compression. The focus is on the compression method that represents a raster image as a set of multiply thinned sub-images. Sub-images are processed consecutively to generate special reference images. The difference between the synthesized reference image and original sub-image forms a divergence array. The algorithm introduces a discrete error into the divergence array to provide the actual bit-depth reduction. However, the introduction of the error inevitably impairs the quality of the decompressed image. The aim is to make sure that the parametric smoothing of divergence arrays can lessen this quality impairment without changing the bit depth reduction originally provided by the method. Numerical experiments on real digital images are carried out to prove that the use of parametric smoothing improves noticeably the efficiency of the image compression method under discussion.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2","pages":"97 - 101"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper elaborates on methods of digital image compression. The focus is on the compression method that represents a raster image as a set of multiply thinned sub-images. Sub-images are processed consecutively to generate special reference images. The difference between the synthesized reference image and original sub-image forms a divergence array. The algorithm introduces a discrete error into the divergence array to provide the actual bit-depth reduction. However, the introduction of the error inevitably impairs the quality of the decompressed image. The aim is to make sure that the parametric smoothing of divergence arrays can lessen this quality impairment without changing the bit depth reduction originally provided by the method. Numerical experiments on real digital images are carried out to prove that the use of parametric smoothing improves noticeably the efficiency of the image compression method under discussion.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.