{"title":"Q-Memory Task Routing to Prevent Deadlocks in Ethernet Control with Memory Crossbar Switching","authors":"Smita Sudhakar Palnitkar, Sudhir Kanade","doi":"10.3103/S1060992X24010077","DOIUrl":null,"url":null,"abstract":"<p>In Ethernet system, as a result of head of line blocking, numerous control data queues with high priority may cause priority queues to become overcrowded and their receiving DMAs (Direct Memory Access) to run out of buffer space, forcing them to delete packets that are still arriving from the network. Thus the primary goal of this work is to prevent deadlock in an Ethernet system while sending congested information across the Ethernet protocol and channel. In order to allow many processors to interact concurrently without causing a conflict, this research paper proposes a Memory crossbar switching control in which the memory is divided into global and local partitions utilizing the q-learning architecture in the development of a Q-Memory task routing architecture. The path average value therefore represents congestion information for each router and its surrounding nodes. The nearby router receives the path average value if the message is received. The networks-on-chip protocol and channel should be used to provide congestion information in order to prevent deadlock in a system and improve communication.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 1","pages":"72 - 85"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24010077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In Ethernet system, as a result of head of line blocking, numerous control data queues with high priority may cause priority queues to become overcrowded and their receiving DMAs (Direct Memory Access) to run out of buffer space, forcing them to delete packets that are still arriving from the network. Thus the primary goal of this work is to prevent deadlock in an Ethernet system while sending congested information across the Ethernet protocol and channel. In order to allow many processors to interact concurrently without causing a conflict, this research paper proposes a Memory crossbar switching control in which the memory is divided into global and local partitions utilizing the q-learning architecture in the development of a Q-Memory task routing architecture. The path average value therefore represents congestion information for each router and its surrounding nodes. The nearby router receives the path average value if the message is received. The networks-on-chip protocol and channel should be used to provide congestion information in order to prevent deadlock in a system and improve communication.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.