Mobina Abbaspour, Mahmoud Nikoufard, Alireza Malek Mohammad
{"title":"Electro-Thermo-Optical Simulations of Phase-Change GST-SiC Plasmonic Optical Modulator for Telecom Applications","authors":"Mobina Abbaspour, Mahmoud Nikoufard, Alireza Malek Mohammad","doi":"10.1002/adts.202400546","DOIUrl":"10.1002/adts.202400546","url":null,"abstract":"<p>This study proposes a novel plasmonic optical modulator integrating the phase-change material germanium-antimony-tellurium (GST) with a silicon carbide (SiC) waveguide for telecom applications. The design utilizes a 10 nm GST cladding layer and a 290 nm thick, 100 nm wide SiC ridge waveguide, with gold electrodes enabling electrothermal switching of GST between amorphous and crystalline states. Comprehensive simulations spanning optical, electrical-thermal, and opto-thermal domains investigated the modulator's performance. Optical simulations examine the effects of wavelength, ridge width, and GST thickness on effective refractive index, confinement factor, and effective area. Electrical-thermal simulations determines voltage pulse parameters for phase transitions and analyzed temperature distributions. Opto-thermal simulations explored temperature's influence on the effective refractive index during phase transitions. Results demonstrate the modulator's potential, achieving 160 Mb s<sup>−1</sup> at 1.55 µm. The SiC-GST integration offers high thermal conductivity, low thermo-optic coefficient, and significant refractive index contrast between GST phases, enabling efficient light modulation for high-performance, compact, energy-efficient optical modulators advancing integrated photonics.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum
{"title":"Device Simulation of 25.9% Efficient \u0000 \u0000 \u0000 \u0000 ZnO\u0000 x\u0000 \u0000 \u0000 N\u0000 y\u0000 \u0000 \u0000 ${rm ZnO}_x{rm N}_y$\u0000 /Si Tandem Solar Cell","authors":"Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum","doi":"10.1002/adts.202400252","DOIUrl":"10.1002/adts.202400252","url":null,"abstract":"<p>The novel, high electron mobility material <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ZnO</mi>\u0000 <mi>x</mi>\u0000 </msub>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>y</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>${rm ZnO}_x{rm N}_y$</annotation>\u0000 </semantics></math> has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ZnO</mi>\u0000 <mi>x</mi>\u0000 </msub>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>y</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>${rm ZnO}_x{rm N}_y$</annotation>\u0000 </semantics></math> can attain sufficiently low carrier concentration to enable <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation>$pn$</annotation>\u0000 </semantics></math>-junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ZnO</mi>\u0000 <mi>x</mi>\u0000 </msub>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>y</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>${rm ZnO}_x{rm N}_y$</annotation>\u0000 </semantics></math> layer, the tandem cell consists of a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Cu</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mi>O</mi>\u0000 </mrow>\u0000 <annotation>${rm Cu}_2{rm O}$</annotation>\u0000 </semantics></math> emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation>$FF$</annotation>\u0000 </semantics></math>. A <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ZnO</mi>\u0000 <mi>x</mi>\u0000 ","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202400252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}