Accurate and Efficient Behavioral Modeling of GaN HEMTs Using An Optimized Light Gradient Boosting Machine

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Saddam Husain, Mohammad Hashmi, Fadhel M. Ghannouchi
{"title":"Accurate and Efficient Behavioral Modeling of GaN HEMTs Using An Optimized Light Gradient Boosting Machine","authors":"Saddam Husain, Mohammad Hashmi, Fadhel M. Ghannouchi","doi":"10.1002/adts.202401565","DOIUrl":null,"url":null,"abstract":"An accurate, efficient, and improved Light Gradient Boosting Machine (LightGBM) based Small-Signal Behavioral Modeling (SSBM) techniques are investigated and presented in this paper for Gallium Nitride High Electron Mobility Transistors (GaN HEMTs). GaN HEMTs grown on SiC, Si and diamond substrates of geometries 2 × 50 <span data-altimg=\"/cms/asset/eb90342a-cca3-4c49-bc52-6b6439d6111a/adts70004-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"271\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70004-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"mu normal m\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70004:adts70004-math-0001\" display=\"inline\" location=\"graphic/adts70004-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-role=\"implicit\" data-semantic-speech=\"mu normal m\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">μ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">m</mi></mrow>$\\umu{\\rm m}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, 10 × 200 <span data-altimg=\"/cms/asset/da6b8095-7d7b-4778-8053-c04798a7f7f2/adts70004-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"272\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70004-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"mu normal m\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70004:adts70004-math-0002\" display=\"inline\" location=\"graphic/adts70004-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-role=\"implicit\" data-semantic-speech=\"mu normal m\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">μ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">m</mi></mrow>$\\umu{\\rm m}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, and 4 × 125 <span data-altimg=\"/cms/asset/0bdcd138-ab94-4dd4-873b-7b5d588e5a5e/adts70004-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"273\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70004-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"mu normal m\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70004:adts70004-math-0003\" display=\"inline\" location=\"graphic/adts70004-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-role=\"implicit\" data-semantic-speech=\"mu normal m\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">μ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">m</mi></mrow>$\\umu{\\rm m}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, respectively are used in this study. A versatile set of LightGBM's hyperparameters including learning and tree specific parameters are meticulously optimized using a modern and vigorous optimization algorithm namely Osprey Optimization Algorithm (OOA) with the objective to accomplish superior model performance. The developed OOA-LightGBM based models are validated for a wide array of operating conditions including for frequency values within a broad spectrum of 0.25 to 120 GHz, 0.1 to 26 GHz, and 0.1 to 40 GHz for GaN-on-SiC, GaN-on-Si, and GaN-on-Diamond HEMTs, respectively. The proposed SSBM techniques have demonstrated remarkable prediction ability and are impressively efficient for all the GaN HEMTs devices tested in this work.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401565","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate, efficient, and improved Light Gradient Boosting Machine (LightGBM) based Small-Signal Behavioral Modeling (SSBM) techniques are investigated and presented in this paper for Gallium Nitride High Electron Mobility Transistors (GaN HEMTs). GaN HEMTs grown on SiC, Si and diamond substrates of geometries 2 × 50 μm$\umu{\rm m}$, 10 × 200 μm$\umu{\rm m}$, and 4 × 125 μm$\umu{\rm m}$, respectively are used in this study. A versatile set of LightGBM's hyperparameters including learning and tree specific parameters are meticulously optimized using a modern and vigorous optimization algorithm namely Osprey Optimization Algorithm (OOA) with the objective to accomplish superior model performance. The developed OOA-LightGBM based models are validated for a wide array of operating conditions including for frequency values within a broad spectrum of 0.25 to 120 GHz, 0.1 to 26 GHz, and 0.1 to 40 GHz for GaN-on-SiC, GaN-on-Si, and GaN-on-Diamond HEMTs, respectively. The proposed SSBM techniques have demonstrated remarkable prediction ability and are impressively efficient for all the GaN HEMTs devices tested in this work.

Abstract Image

基于优化光梯度增强机的GaN hemt精确高效行为建模
针对氮化镓高电子迁移率晶体管(GaN HEMTs),研究了一种精确、高效、改进的基于光梯度增强机(LightGBM)的小信号行为建模(SSBM)技术。GaN hemt分别生长在几何形状为2 × 50 μ m$\umu{\rm m}$、10 × 200 μ m$\umu{\rm m}$和4 × 125 μ m$\umu{\rm m}$的SiC、Si和金刚石基底上。使用现代而有力的优化算法,即鱼鹰优化算法(OOA),对LightGBM的多用途超参数(包括学习参数和树特定参数)进行了精心优化,目的是实现卓越的模型性能。开发的基于OOA-LightGBM的模型在广泛的工作条件下进行了验证,包括分别适用于GaN-on-SiC, GaN-on-Si和GaN-on-Diamond hemt的0.25至120 GHz, 0.1至26 GHz和0.1至40 GHz的广谱频率值。提出的SSBM技术已经证明了卓越的预测能力,并且对于本工作中测试的所有GaN hemt器件都具有令人印象深刻的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信