Burak Arslan, Ugur Bozuyuk, Kıvanç Görgülü, Erdost Yildiz, Hakancan Ozturk, Lucia Liotta, Volker Heinemann, Hana Algül, Metin Sitti
{"title":"各向异性表面微滚轴用于血管内导航:以肝脏灌注为例的计算分析","authors":"Burak Arslan, Ugur Bozuyuk, Kıvanç Görgülü, Erdost Yildiz, Hakancan Ozturk, Lucia Liotta, Volker Heinemann, Hana Algül, Metin Sitti","doi":"10.1002/adts.202400387","DOIUrl":null,"url":null,"abstract":"Magnetic surface microrollers have demonstrated promise as active drug delivery agents for targeted and minimally invasive disease treatment. Specifically, it can be employed in the circulatory system to locally release therapeutic agents at disease sites, minimizing systemic exposure and reducing side effects, particularly in the treatment of diseases like cancer. Previous research indicates that the design and shape of microrollers play a crucial role in safe navigation within blood vessels, with anisotropic microrollers exhibiting superiority due to favorable hydrodynamic interactions with nearby boundaries. In this study, the navigation potential of anisotropic microrollers is investigated in veins, venules, and capillaries through computational fluid dynamics analyses. These results indicate that robust locomotion is only achievable in larger vessels, such as veins. Subsequently, their performance is explored in a clinically relevant scenario – the hepatic circulation toward treating primary liver cancer or metastatic nodes of distant tumors (e.g., pancreatic cancer). Computational fluid dynamics analyses using the data from five different patients demonstrate that robust navigation can be achieved with high actuation frequencies. Overall, the findings presented in this study lay a preliminary foundation for the potential future application of surface microrollers in vivo.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"38 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Surface Microrollers for Endovascular Navigation: A Computational Analysis with a Case Study in Hepatic Perfusion\",\"authors\":\"Burak Arslan, Ugur Bozuyuk, Kıvanç Görgülü, Erdost Yildiz, Hakancan Ozturk, Lucia Liotta, Volker Heinemann, Hana Algül, Metin Sitti\",\"doi\":\"10.1002/adts.202400387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic surface microrollers have demonstrated promise as active drug delivery agents for targeted and minimally invasive disease treatment. Specifically, it can be employed in the circulatory system to locally release therapeutic agents at disease sites, minimizing systemic exposure and reducing side effects, particularly in the treatment of diseases like cancer. Previous research indicates that the design and shape of microrollers play a crucial role in safe navigation within blood vessels, with anisotropic microrollers exhibiting superiority due to favorable hydrodynamic interactions with nearby boundaries. In this study, the navigation potential of anisotropic microrollers is investigated in veins, venules, and capillaries through computational fluid dynamics analyses. These results indicate that robust locomotion is only achievable in larger vessels, such as veins. Subsequently, their performance is explored in a clinically relevant scenario – the hepatic circulation toward treating primary liver cancer or metastatic nodes of distant tumors (e.g., pancreatic cancer). Computational fluid dynamics analyses using the data from five different patients demonstrate that robust navigation can be achieved with high actuation frequencies. Overall, the findings presented in this study lay a preliminary foundation for the potential future application of surface microrollers in vivo.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400387\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400387","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Anisotropic Surface Microrollers for Endovascular Navigation: A Computational Analysis with a Case Study in Hepatic Perfusion
Magnetic surface microrollers have demonstrated promise as active drug delivery agents for targeted and minimally invasive disease treatment. Specifically, it can be employed in the circulatory system to locally release therapeutic agents at disease sites, minimizing systemic exposure and reducing side effects, particularly in the treatment of diseases like cancer. Previous research indicates that the design and shape of microrollers play a crucial role in safe navigation within blood vessels, with anisotropic microrollers exhibiting superiority due to favorable hydrodynamic interactions with nearby boundaries. In this study, the navigation potential of anisotropic microrollers is investigated in veins, venules, and capillaries through computational fluid dynamics analyses. These results indicate that robust locomotion is only achievable in larger vessels, such as veins. Subsequently, their performance is explored in a clinically relevant scenario – the hepatic circulation toward treating primary liver cancer or metastatic nodes of distant tumors (e.g., pancreatic cancer). Computational fluid dynamics analyses using the data from five different patients demonstrate that robust navigation can be achieved with high actuation frequencies. Overall, the findings presented in this study lay a preliminary foundation for the potential future application of surface microrollers in vivo.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics