{"title":"Simulation on the Miniaturization and Performance Improvement Study of Gr/MoS2 Based Vertical Field Effect Transistor","authors":"Sirsendu Ghosh, Anamika Devi Laishram, Pramod Kumar","doi":"10.1002/adts.202500139","DOIUrl":null,"url":null,"abstract":"Vertical field effect transistors (VFETs) show many advantages such as high switching speed, low operating voltage, low power consumption, and miniaturization over lateral FETs. Graphene (Gr) and transition metal di-chalcogenides (TMDs) are attractive 2D materials for the next generation electronics due to their subnanometer monolayer thickness. The layer by layer structure in 2D materials allows device fabrication down to a monolayer or a few layers, hence advantageous for VOFETs. In this simulation work, the bulk molybdenum disulfide (MoS<sub>2</sub>) is sandwiched between perforated monolayer graphene which acts as the source electrode, and aluminum (Al) as the top drain electrode. In addition to this, the minimization of the off-state current is carried out by modifications in the source contact geometry by insulating some part of the source electrode and introducing the extra MoS<sub>2</sub> layer between the source and gate dielectric named as buried layer. After the modification, the results show an improvement in OFF current, hence the ON/OFF ratio. The ON/OFF ratio of 10<sup>6</sup> is achieved for the device with a gate width and channel length of 100 nm. Additionally, the gate width is miniaturized to 50 nm by introducing insulation on the source contact to achieve similar performance.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"38 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vertical field effect transistors (VFETs) show many advantages such as high switching speed, low operating voltage, low power consumption, and miniaturization over lateral FETs. Graphene (Gr) and transition metal di-chalcogenides (TMDs) are attractive 2D materials for the next generation electronics due to their subnanometer monolayer thickness. The layer by layer structure in 2D materials allows device fabrication down to a monolayer or a few layers, hence advantageous for VOFETs. In this simulation work, the bulk molybdenum disulfide (MoS2) is sandwiched between perforated monolayer graphene which acts as the source electrode, and aluminum (Al) as the top drain electrode. In addition to this, the minimization of the off-state current is carried out by modifications in the source contact geometry by insulating some part of the source electrode and introducing the extra MoS2 layer between the source and gate dielectric named as buried layer. After the modification, the results show an improvement in OFF current, hence the ON/OFF ratio. The ON/OFF ratio of 106 is achieved for the device with a gate width and channel length of 100 nm. Additionally, the gate width is miniaturized to 50 nm by introducing insulation on the source contact to achieve similar performance.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics