Advances in cancer biology - metastasis最新文献

筛选
英文 中文
Molecular signaling network and therapeutic developments in breast cancer brain metastasis 乳腺癌脑转移的分子信号网络和治疗进展
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2022.100079
Mercilena Benjamin , Pushkar Malakar , Rohit Anthony Sinha , Mohd Wasim Nasser , Surinder K. Batra , Jawed Akhtar Siddiqui , Bandana Chakravarti
{"title":"Molecular signaling network and therapeutic developments in breast cancer brain metastasis","authors":"Mercilena Benjamin ,&nbsp;Pushkar Malakar ,&nbsp;Rohit Anthony Sinha ,&nbsp;Mohd Wasim Nasser ,&nbsp;Surinder K. Batra ,&nbsp;Jawed Akhtar Siddiqui ,&nbsp;Bandana Chakravarti","doi":"10.1016/j.adcanc.2022.100079","DOIUrl":"10.1016/j.adcanc.2022.100079","url":null,"abstract":"<div><p>Breast cancer (BC) is one of the most frequently diagnosed cancers in women worldwide. It has surpassed lung cancer as the leading cause of cancer-related death. Breast cancer brain metastasis (BCBM) is becoming a major clinical concern that is commonly associated with ER-ve and HER2+ve subtypes of BC patients. Metastatic lesions in the brain originate when the cancer cells detach from a primary breast tumor and establish metastatic lesions and infiltrate near and distant organs via systemic blood circulation by traversing the BBB. The colonization of BC cells in the brain involves a complex interplay in the tumor microenvironment (TME), metastatic cells, and brain cells like endothelial cells, microglia, and astrocytes. BCBM is a significant cause of morbidity and mortality and presents a challenge to developing successful cancer therapy. In this review, we discuss the molecular mechanism of BCBM and novel therapeutic strategies for patients with brain metastatic BC.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100079"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/36/EMS158476.PMC7613958.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9787799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metastatic niches in patients with high-grade neuroendocrine tumours: Apparent findings of matched triple-positive radiolabelled molecular probes by nuclear medicine sequence imaging 高级别神经内分泌肿瘤患者的转移龛:核医学序列成像中匹配三阳性放射性标记分子探针的明显发现
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100100
Denise da Silveira Lobo , Eloa Pereira Brabo , Sergio Augusto Lopes de Souza
{"title":"Metastatic niches in patients with high-grade neuroendocrine tumours: Apparent findings of matched triple-positive radiolabelled molecular probes by nuclear medicine sequence imaging","authors":"Denise da Silveira Lobo ,&nbsp;Eloa Pereira Brabo ,&nbsp;Sergio Augusto Lopes de Souza","doi":"10.1016/j.adcanc.2023.100100","DOIUrl":"10.1016/j.adcanc.2023.100100","url":null,"abstract":"<div><p>Nuclear medicine imaging of neuroendocrine neoplasm (NEN) patients could evidence cancer cell states related to glycolytic hypermetabolism, somatostatin (SST) receptors overexpression or norepinephrine (NE) transport system hyperactivity status of cancer cells profiles, according to the radiolabelled molecular probe used: fluorodeoxyglucose (FDG), octreotide (SST analogue) or the compound metaiodobenzylguanidine (NE analogue), respectively. NEN lesions with positive positron emission tomography with <sup>18</sup>FDG (glucose analogue radiolabelled with fluoride-18) stablished a relationship with tumour aggressiveness and poorly differentiated cell morphology. Otherwise, NEN lesions evidencing somatostatin receptors (SSTR) overexpression or abnormal surface NE transporter system hyperactivity status of cancer cell profiles correlated with well differentiated cell morphology. Theoretically, the apparent correspondence between the triple-positive imaging of glycolytic hypermetabolism, SSTR overexpression and abnormal NE transporter system hyperactivity of overlapping cancer cell states in metastatic site of a NEN patient could be revealing a single tumorigenic subpopulation with a dynamic divergent differentiation potential. The complex events of metastasis progression included transdifferentiation from epithelial-to-mesenchymal to leave the primary neoplastic niche, probable as a collective migration of cancer cells, including cancer stem cells (CSCs), to circulating and reversibly transdifferentiating from mesenchymal-to-epithelial to settle in distant niches. Considering future research perspectives, we argued whether the apparent triple-positive matched correlative imaging with the radiolabelled molecular probes (glucose, SST and NE analogues) in patients’ metastatic niches could indicate potential biopsy sites to further investigation for the potential CSCs properties. We suggested that early treatment planning with lutetium-177-based peptide receptor radionuclide therapy, could provide for the blocking of poorly differentiated cell states at the point of differentiation to well differentiated cell states, and vice versa. In addition, specific individual cases should be considered for targeted-based therapy with radiolabelled-NE analogue, blocking dedifferentiation and transdifferentiation from abnormal NE transporter system hyperactivity status to SSTR overexpression cancer cell profile.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44076485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of ketogenic diet on oxidative stress and cancer: A literature review 生酮饮食对氧化应激和癌症的影响:文献综述
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100093
Salman A. Alhamzah , Othman M. Gatar , Nawaf W. Alruwaili
{"title":"Effects of ketogenic diet on oxidative stress and cancer: A literature review","authors":"Salman A. Alhamzah ,&nbsp;Othman M. Gatar ,&nbsp;Nawaf W. Alruwaili","doi":"10.1016/j.adcanc.2023.100093","DOIUrl":"10.1016/j.adcanc.2023.100093","url":null,"abstract":"<div><p>The ketogenic diet (KD) is a low-carbohydrate, high-fat diet that is primarily used to treat childhood epilepsy. The processes through which the ketogenic diet works, on the other hand, have been proposed as a preventative method for oxidative stress and as adjuvant therapy for various disorders, including cancer. The current review aim is to assess the effect of the ketogenic diet on oxidative stress and cancer. A review of the scientific literature on the effects of the ketogenic diet on oxidative stress, cancer, and the mitochondrial metabolism is provided. Furthermore, the review depicts the human research that evaluated the anti-tumour benefits of ketogenic diets on patients with cancer, with a total of 154 subjects. Although preclinical research indicates that KD has anticancer benefits, prolongs longevity, and inhibits cancer growth, human clinical trials are inconclusive. The effects of KD on cancer and as an adjuvant treatment are mostly unclear due to a paucity of high-quality clinical research. We suggest a series of research recommendations for clinical trials exploring the impact of KD on cancer growth and progression.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45625981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Heterogeneity in hormone-dependent breast cancer and therapy: Steroid hormones, HER2, melanoma antigens, and cannabinoid receptors 激素依赖性乳腺癌症的异质性和治疗:类固醇激素、HER2、黑色素瘤抗原和大麻素受体
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2022.100086
Tajda Tavčar Kunstič , Nataša Debeljak , Klementina Fon Tacer
{"title":"Heterogeneity in hormone-dependent breast cancer and therapy: Steroid hormones, HER2, melanoma antigens, and cannabinoid receptors","authors":"Tajda Tavčar Kunstič ,&nbsp;Nataša Debeljak ,&nbsp;Klementina Fon Tacer","doi":"10.1016/j.adcanc.2022.100086","DOIUrl":"10.1016/j.adcanc.2022.100086","url":null,"abstract":"<div><p>Breast cancer is the most frequently diagnosed cancer and the leading cause of death by cancer among women worldwide. The prognosis of the disease and patients’ response to different types of therapies varies in different subgroups of this heterogeneous disease. The subgroups are based on histological and molecular characteristics of the tumor, especially the expression of estrogen (ER) and progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Hormone-dependent breast cancer, determined predominantly by the presence of ER, is the most common type of breast cancer. Patients with hormone-dependent breast cancer have an available targeted therapy, however, tumor cells can develop resistance to the therapy, which is a major obstacle limiting the success of treatment and enabling relapse to metastatic disease. The complicated crosstalk of both tumor-intrinsic and exogenous factors may contribute to endocrine resistance, although the underlying molecular details are still enigmatic. For example, the expression of the melanoma antigen genes (MAGE) correlates with a worse clinical prognosis and therapy resistance in many types of cancers, including breast cancer. Recent studies suggested that cancers co-opt MAGEs’ physiological functions to promote therapy resistance and potentially metastasis development. The response to the therapy can be also affected by the concurrent use of alternative therapy, e.g., cannabinoid use is popular among breast cancer patients. Cannabinoids interact with endogenous estrogen function, however, how they interfere with breast cancer therapy is still poorly understood. In this review, we summarize the role of ER, PR, and HER2 in hormone-dependent breast cancer; provide current knowledge of MAGEs and cannabinoid receptors in breast cancer; ultimately discuss the potential interlacement of their signaling paths which may underlay diverse responses to therapies in breast cancer patients simultaneously using cannabinoids. These interactions are poorly understood but critical for the advancement of conventional and complementary treatment options for patients, particularly the ones with metastatic disease.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49545387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A comprehensive analysis of notch signaling genes in breast cancer: Expression pattern and prognostic significance 乳腺癌症notch信号基因表达模式及预后意义的综合分析
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100104
Shazia Sofi , Hina Qayoom , Nusrat Jan , Nighat Khaliq , Mohd Zahoor ul Haq Shah , Abdullah Almilaibary , Manzoor Ahmad Mir
{"title":"A comprehensive analysis of notch signaling genes in breast cancer: Expression pattern and prognostic significance","authors":"Shazia Sofi ,&nbsp;Hina Qayoom ,&nbsp;Nusrat Jan ,&nbsp;Nighat Khaliq ,&nbsp;Mohd Zahoor ul Haq Shah ,&nbsp;Abdullah Almilaibary ,&nbsp;Manzoor Ahmad Mir","doi":"10.1016/j.adcanc.2023.100104","DOIUrl":"https://doi.org/10.1016/j.adcanc.2023.100104","url":null,"abstract":"<div><p>The most recurrent type of cancer among women is breast cancer which is an intricate disease with high intertumoral and intratumoral heterogeneity. Such variability is a key factor in the failure of current treatments and the emergence of resistance. It is crucial to develop novel therapeutic options to enhance the prognosis for breast cancer patients due to the limitations of current therapy and the unavoidable formation of acquired drug resistance (chemo and endocrine) as well as radio resistance. Poor clinical results in the treatment of breast cancer, that is resistance are associated with deregulated Notch signalling within the breast tumor and its tumor microenvironment (TME). In this research, a bioinformatics approach was used to check the expression pattern, the role, as well as the prognostic and diagnostic significance of the deregulated Notch-related genes in BC patients. The various bioinformatic tools include; UCSC XENA, GEPIA 2, UALCAN, bc Genexminer, KM Plotter, ENRICHR, STRING and Cytoscape. The study demonstrates that highly dysregulated genes (NOTCH4, CCND1, JAG1, DLL1, MAML2, and EGFR) can be used as biomarkers to identify breast cancer patients with poor prognosis and as potential targets for therapeutic intervention. The study found that 6 genes—NOTCH4, CCND1, JAG1, DLL1, MAML2, and EGFR—out of 22 tested genes showed a significant log2 fold change. Our study revealed that Luminal Breast Cancer patients display a high expression of the CCND1 gene in comparison to its expression in normal. The results of our study also depicted that the patients with elevated levels of NOTCH-related gene expression displayed better relapse-free survival with p &lt; 0.05. Moreover, we analysed the deregulated notch genes that play an important role in various cellular and molecular processes. The study shows that these highly deregulated screened genes could be utilized as the Biomarkers that help to reveal poor prognosis and could act as targets for treating BC. However, the identification of these dysregulated genes involved in notch signallibng through insilico approach is not sufficient.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49816077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Metastasis in renal cell carcinoma: Biology and treatment 肾细胞癌的转移:生物学和治疗
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100094
Rafiah Kanwal
{"title":"Metastasis in renal cell carcinoma: Biology and treatment","authors":"Rafiah Kanwal","doi":"10.1016/j.adcanc.2023.100094","DOIUrl":"10.1016/j.adcanc.2023.100094","url":null,"abstract":"<div><p>Renal cell carcinoma (RCC) is a heterogeneous group of cancer that reacts inappropriately to recent therapeutic methods and is frequently linked with an uncertain clinical channel. The biology of renal cell carcinoma (RCC) depends on histology, tumor diversity, and the biological mechanism of metastasis. Malignant renal cell carcinoma (RCC) tumors can spread to bones, brain, pancreas, gallbladder, and adrenal gland resulting in metastasis. Medical treatment for renal cell carcinoma (RCC) has transformed from cytokine-based methods to targeted agent therapy against vascular endothelial growth factor (VEGF), and most recently to immunotherapy drugs. This review aims to summarize the biology of renal cell carcinoma and to understand the present and future directions in the treatment of metastasis.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43163425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helicobacter pylori infected gastric epithelial cells bypass cell death pathway through the oncoprotein Gankyrin 幽门螺杆菌感染的胃上皮细胞通过癌蛋白甘肽绕过细胞死亡途径
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100087
Dharmendra Kashyap , Nidhi Varshney , Budhadev Baral , Meenakshi Kandpal , Omkar Indari , Ajay Kumar Jain , Debi Chatterji , Sachin Kumar , Hamendra Singh Parmar , Avinash Sonawane , Hem Chandra Jha
{"title":"Helicobacter pylori infected gastric epithelial cells bypass cell death pathway through the oncoprotein Gankyrin","authors":"Dharmendra Kashyap ,&nbsp;Nidhi Varshney ,&nbsp;Budhadev Baral ,&nbsp;Meenakshi Kandpal ,&nbsp;Omkar Indari ,&nbsp;Ajay Kumar Jain ,&nbsp;Debi Chatterji ,&nbsp;Sachin Kumar ,&nbsp;Hamendra Singh Parmar ,&nbsp;Avinash Sonawane ,&nbsp;Hem Chandra Jha","doi":"10.1016/j.adcanc.2023.100087","DOIUrl":"10.1016/j.adcanc.2023.100087","url":null,"abstract":"<div><p><em>H. pylori</em> infection can lead to gastric diseases by modulating the various cellular processes such as cellular stress, apoptosis, autophagy, and metabolic changes. <em>H. pylori</em> exposed gastric epithelial cells bypass the cell death pathways. However, the underlying molecular mechanisms remain in infancy. Herein, we determined that <em>H. pylori</em> infection on gastric epithelial cells bypass the cell death pathway <em>via</em> the modulation of autophagy-related signaling molecules (LC3B and ATG7) through the host-associated oncoprotein Gankyrin. Upregulated expression of Gankyrin further enhanced the various antioxidant (<em>gclm</em>, <em>gclc</em>, <em>sod2</em>, <em>cat</em>, <em>keap1</em>, <em>ant</em>, and <em>hsf1</em>) and autophagy-associated genes’ transcripts (<em>atg5</em>, <em>atg7</em>, <em>lc3b</em>, <em>beclin,</em> and <em>sqstm1</em>). Elevated expression of Gankyrin also modulates the various downstream signaling proteins such as Akt, Beta-catenin, and NFkB. We also observed altered cancerous properties of gastric epithelial cells <em>viz;</em> apoptosis, wound healing, chemoresistance, biomass and membrane potential of mitochondria. Concisely, the study revealed that <em>H. pylori</em> infection promotes GC <em>via</em> autophagy through the modulation of oncoprotein Gankyrin and cellular reactive oxygen species (ROS). Overall, our study demonstrated the antiapoptotic property of <em>H pylori-</em>infected gastric epithelial cells might govern through Gankyrin-directed autophagy.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46866807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Alpha mangostin inhibits proliferation, migration, and invasion of human breast cancer cells via STAT3 inhibition α-芒果苷通过抑制STAT3抑制人乳腺癌症细胞的增殖、迁移和侵袭
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100089
Lakshmi Vineela Nalla , Anil Dharavath , Santosh Kumar Behera , Amit Khairnar
{"title":"Alpha mangostin inhibits proliferation, migration, and invasion of human breast cancer cells via STAT3 inhibition","authors":"Lakshmi Vineela Nalla ,&nbsp;Anil Dharavath ,&nbsp;Santosh Kumar Behera ,&nbsp;Amit Khairnar","doi":"10.1016/j.adcanc.2023.100089","DOIUrl":"10.1016/j.adcanc.2023.100089","url":null,"abstract":"<div><h3>Background</h3><p>Signal Transducer and Activator of Transcription 3 (STAT3) is an identified critical protein associated with the progression of cancer. Alpha mangostin (α-M), a powerful dietary xanthone found to have anti-cancer properties against various cancers. However, the precise mechanism of its anti-cancer activity is not fully understood. Therefore, the current work hypothesized that targeting STAT3 with α-M inhibits the migration, invasion, and proliferation of breast cancer cells. Firstly, we evaluated the binding affinity of α-M/STAT3 complex using molecular dynamic simulations (MDS) and further we determined the likely underlying mechanism of STAT3 through <em>in-vitro</em> experiments. α-M treatment affected the levels of STAT3 phosphorylation, hnRNP-A1, PKM2, and EMT markers. α-M stimulation in breast cancer cells also resulted in suppressed migratory and invasive behaviour. More importantly, the treatment also affected the Ki67 and BrdU positive cells. In summary, we found the anti-migratory and anti-proliferative actions of α-M in breast cancer cells via STAT3 inhibition. Also, the study significantly adds a new nutraceutical for therapeutic intervention of invasive breast cancer.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44752896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Partial EMT and associated changes in cellular plasticity in oncovirus-positive samples 肿瘤病毒阳性样本的部分EMT及其细胞可塑性的相关变化
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100091
Manas Sehgal , Ritoja Ray , Joel Markus Vaz , Shrihar Kanikar , Jason A. Somarelli , Mohit Kumar Jolly
{"title":"Partial EMT and associated changes in cellular plasticity in oncovirus-positive samples","authors":"Manas Sehgal ,&nbsp;Ritoja Ray ,&nbsp;Joel Markus Vaz ,&nbsp;Shrihar Kanikar ,&nbsp;Jason A. Somarelli ,&nbsp;Mohit Kumar Jolly","doi":"10.1016/j.adcanc.2023.100091","DOIUrl":"https://doi.org/10.1016/j.adcanc.2023.100091","url":null,"abstract":"<div><p>Oncoviruses exploit diverse host mechanisms to survive and proliferate. These adaptive strategies overlap with mechanisms employed by malignant cells during their adaptation to dynamic micro-environments and for evasion of immune attack. While the role of individual oncoviruses in mediating cancer progression has been extensively characterized, little is known about the common gene regulatory features of oncovirus-induced cancers. Here, we focus on defining the interplay between several cancer hallmarks, including Epithelial-Mesenchymal Transition (EMT), metabolic alterations, and immune evasion across major oncoviruses by examining publicly available transcriptomics datasets containing both oncovirus-positive and oncovirus-negative samples. We observe that oncovirus-positive samples display varying degrees of EMT and metabolic reprogramming. While the progression of EMT generally associated with an enriched glycolytic metabolic program and suppressed fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS), partial EMT correlated well with glycolysis. Furthermore, oncovirus-positive samples had higher activity and/or expression levels of immune checkpoint molecules, such as PD-L1, which was associated with a partial EMT program. These analyses thus decode common pathways in oncovirus-positive samples that may be used in pinpointing new therapeutic vulnerabilities for cancer cell plasticity.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"7 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49816075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the role of S100 proteins in mammary gland regulation and their role in breast cancer metastasis S100蛋白在乳腺调节中的作用及其在乳腺癌症转移中的作用
Advances in cancer biology - metastasis Pub Date : 2023-07-01 DOI: 10.1016/j.adcanc.2023.100106
Parul Singh, Syed Azmal Ali
{"title":"Decoding the role of S100 proteins in mammary gland regulation and their role in breast cancer metastasis","authors":"Parul Singh, Syed Azmal Ali","doi":"10.1016/j.adcanc.2023.100106","DOIUrl":"https://doi.org/10.1016/j.adcanc.2023.100106","url":null,"abstract":"","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46439132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信