ACS polymers AuPub Date : 2023-05-04DOI: 10.1021/acspolymersau.3c00004
Marianne S. Meyersohn, Farihah M. Haque and Marc A. Hillmyer*,
{"title":"Dynamic Aliphatic Polyester Elastomers Crosslinked with Aliphatic Dianhydrides","authors":"Marianne S. Meyersohn, Farihah M. Haque and Marc A. Hillmyer*, ","doi":"10.1021/acspolymersau.3c00004","DOIUrl":"10.1021/acspolymersau.3c00004","url":null,"abstract":"<p >Chemically crosslinked elastomers are a class of polymeric materials with properties that render them useful as adhesives, sealants, and in other engineering applications. Poly(γ-methyl-ε-caprolactone) (PγMCL) is a hydrolytically degradable and compostable aliphatic polyester that can be biosourced and exhibits competitive mechanical properties to traditional elastomers when chemically crosslinked. A typical limitation of chemically crosslinked elastomers is that they cannot be reprocessed; however, the incorporation of dynamic covalent bonds can allow for bonds to reversibly break and reform under an external stimulus, usually heat. In this work, we study the dynamic behavior and mechanical properties of PγMCL elastomers synthesized from aliphatic dianhydride crosslinkers. The crosslinked elastomers in this work were synthesized using the commercially available crosslinkers, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride and three-arm hydroxy-telechelic PγMCL star polymers. Stress relaxation experiments on the crosslinked networks showed an Arrhenius dependence of viscosity with temperature with an activation energy of 118 ± 8 kJ/mol, which agrees well with the activation energy of transesterification exchange chemistry obtained from small molecule model studies. Dynamic mechanical thermal analysis and rheological experiments confirmed the dynamic nature of the networks and provided insight into the mechanism of exchange (i.e., associative or dissociative). Tensile testing showed that these materials can exhibit high strains at break and low Young’s moduli, characteristic of soft and strong elastomers. By controlling the exchange chemistry and understanding the effect of macromolecular structure on mechanical properties, we prepared the high-performance elastomers that can be potentially reprocessed at moderately elevated temperatures.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 5","pages":"365–375"},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-04-21DOI: 10.1021/acspolymersau.3c00006
Michael Lueckheide, Alexander Marin, Harichandra D. Tagad, Nicholas D. Posey, Vivek M. Prabhu* and Alexander K. Andrianov*,
{"title":"Monitoring Protein Complexation with Polyphosphazene Polyelectrolyte Using Automated Dynamic Light Scattering Titration and Asymmetric Flow Field Flow Fractionation and Protein Recognition Immunoassay","authors":"Michael Lueckheide, Alexander Marin, Harichandra D. Tagad, Nicholas D. Posey, Vivek M. Prabhu* and Alexander K. Andrianov*, ","doi":"10.1021/acspolymersau.3c00006","DOIUrl":"10.1021/acspolymersau.3c00006","url":null,"abstract":"<p >Polyphosphazenes represent a class of intrinsically flexible polyelectrolytes with potent immunoadjuvant activity, which is enabled through non-covalent self-assembly with antigenic proteins by charge complexation. The formation of supramolecular complexes between polyphosphazene adjuvant, poly[di(carboxylatophenoxy)phosphazene] (PCPP), and a model vaccine antigen, hen egg lysozyme, was studied under physiological conditions using automated dynamic light scattering titration, asymmetric flow field flow fractionation (AF4), enzyme-linked immunosorbent assay (ELISA), and fluorescent quenching methods. Three regimes of self-assembly were observed covering complexation of PCPP with lysozyme in the nano-scale range, multi-chain complexes, and larger aggregates with complexes characterized by a maximum loading of over six hundred protein molecules per PCPP chain and dissociation constant in the micromolar range (<i>K</i><sub>d</sub> = 7 × 10<sup>–6</sup> mol/L). The antigenicity of PCPP bound lysozyme, when compared to equivalent lysozyme solutions, was largely retained for all complexes, but observed a dramatic reduction for heavily aggregated systems. Routes to control the complexation regimes with elevated NaCl or KCl salt concentrations indicate ion-specific effects, such that more smaller-size complexes are present at higher NaCl, counterintuitive with respect to PCPP solubility arguments. While the order of mixing shows a prominent effect at lower stoichiometries of mixing, higher NaCl salt reduces the effect all together.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 5","pages":"354–364"},"PeriodicalIF":0.0,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-04-05DOI: 10.1021/acspolymersau.2c00068
Jonathan P. Coote, Samuel K. J. Adotey, Joshua R. Sangoro and Gila E. Stein*,
{"title":"Interfacial Effects in Conductivity Measurements of Block Copolymer Electrolytes","authors":"Jonathan P. Coote, Samuel K. J. Adotey, Joshua R. Sangoro and Gila E. Stein*, ","doi":"10.1021/acspolymersau.2c00068","DOIUrl":"10.1021/acspolymersau.2c00068","url":null,"abstract":"<p >The ionic conductivity in lamellar block copolymer electrolytes is often anisotropic, where the in-plane conductivity exceeds the through-plane conductivity by up to an order of magnitude. In a prior work, we showed significant anisotropy in the ionic conductivity of a lamellar block copolymer based on polystyrene (PS) and a polymer ionic liquid (PIL), and we proposed that the through-film ionic conductivity was depressed by layering of lamellar domains near the electrode surface. In the present work, we first tested that conclusion by measuring the through-plane ionic conductivity of two model PIL-based systems having controlled interfacial profiles using impedance spectroscopy. The measurements were not sensitive to changes in interfacial composition or structure, so anisotropy in the ionic conductivity of PS-<i>block</i>-PIL materials must arise from an in-plane enhancement rather than a through-plane depression. We then examined the origin of this in-plane enhancement with a series of PS-<i>block</i>-PIL materials, a P(S-r-IL) copolymer, and a PIL homopolymer, where impedance spectra were acquired with a top-contact electrode configuration. These studies show that enhanced in-plane ionic conductivities are correlated with the formation of an IL-rich wetting layer at the free surface, which presumably provides a low-resistance path for ion transport between the electrodes. Importantly, the enhanced in-plane ionic conductivities in these PS-<i>block</i>-PIL materials are consistent with simple geometric arguments based on properties of the PIL, while the through-plane values are an order of magnitude lower. Consequently, it is critical to understand how surface and bulk effects contribute to impedance spectroscopy measurements when developing structure–conductivity relations in this class of materials.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 4","pages":"331–343"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/fc/lg2c00068.PMC10416321.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10002034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-03-30DOI: 10.1021/acspolymersau.2c00069
Michael Q. Tu, Oleg Davydovich, Baicheng Mei, Piyush K. Singh, Gary S. Grest, Kenneth S. Schweizer, Thomas C. O’Connor* and Charles M. Schroeder*,
{"title":"Unexpected Slow Relaxation Dynamics in Pure Ring Polymers Arise from Intermolecular Interactions","authors":"Michael Q. Tu, Oleg Davydovich, Baicheng Mei, Piyush K. Singh, Gary S. Grest, Kenneth S. Schweizer, Thomas C. O’Connor* and Charles M. Schroeder*, ","doi":"10.1021/acspolymersau.2c00069","DOIUrl":"10.1021/acspolymersau.2c00069","url":null,"abstract":"<p >Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring–ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring–ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring–ring interpenetrations, governed by the onset variable <i>N</i>/<i>N</i><sub>D</sub>, where the crossover degree of polymerization <i>N</i><sub>D</sub> is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 4","pages":"307–317"},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/bc/lg2c00069.PMC10416323.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9999216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-03-29DOI: 10.1021/acspolymersau.3c00003
Seonghwan Kim, Charles M. Schroeder and Nicholas E. Jackson*,
{"title":"Open Macromolecular Genome: Generative Design of Synthetically Accessible Polymers","authors":"Seonghwan Kim, Charles M. Schroeder and Nicholas E. Jackson*, ","doi":"10.1021/acspolymersau.3c00003","DOIUrl":"10.1021/acspolymersau.3c00003","url":null,"abstract":"<p >A grand challenge in polymer science lies in the predictive design of new polymeric materials with targeted functionality. However, <i>de novo</i> design of functional polymers is challenging due to the vast chemical space and an incomplete understanding of structure–property relations. Recent advances in deep generative modeling have facilitated the efficient exploration of molecular design space, but data sparsity in polymer science is a major obstacle hindering progress. In this work, we introduce a vast polymer database known as the Open Macromolecular Genome (OMG), which contains synthesizable polymer chemistries compatible with known polymerization reactions and commercially available reactants selected for synthetic feasibility. The OMG is used in concert with a synthetically aware generative model known as Molecule Chef to identify property-optimized constitutional repeating units, constituent reactants, and reaction pathways of polymers, thereby advancing polymer design into the realm of synthetic relevance. As a proof-of-principle demonstration, we show that polymers with targeted octanol–water solubilities are readily generated together with monomer reactant building blocks and associated polymerization reactions. Suggested reactants are further integrated with Reaxys polymerization data to provide hypothetical reaction conditions (e.g., temperature, catalysts, and solvents). Broadly, the OMG is a polymer design approach capable of enabling data-intensive generative models for synthetic polymer design. Overall, this work represents a significant advance, enabling the property targeted design of synthetic polymers subject to practical synthetic constraints.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 4","pages":"318–330"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a8/68/lg3c00003.PMC10416319.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9990459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-03-05DOI: 10.1021/acspolymersau.2c00070
Emily A. Hoff, Richard K. Weigel, Adithya Rangamani and Christopher A. Alabi*,
{"title":"Discrete Oligocarbamates Exhibit Sequence-Dependent Fluorescence Emission and Quenching","authors":"Emily A. Hoff, Richard K. Weigel, Adithya Rangamani and Christopher A. Alabi*, ","doi":"10.1021/acspolymersau.2c00070","DOIUrl":"10.1021/acspolymersau.2c00070","url":null,"abstract":"<p >The encoded precision of biological polymers enables a few simple monomers (e.g., four nucleotides in nucleic acids) to create complex macromolecular structures that accomplish a myriad of functions. Similar spatial precision in synthetic polymers and oligomers can be harnessed to create macromolecules and materials with rich and tunable properties. Recent exciting advances in iterative solid- and solution-phase synthetic strategies have led to the scalable production of discrete macromolecules, which in turn has enabled the study of sequence-dependent material properties. Our recent example of a scalable synthetic strategy using inexpensive vanillin-based monomers to create sequence-defined oligocarbamates (SeDOCs) enabled the preparation of isomeric oligomers with different thermal and mechanical properties. We show that unimolecular SeDOCs also exhibit sequence-dependent dynamic fluorescence quenching that persists from solution to the solid phase. We detail the evidence for this phenomenon and show that changes in fluorescence emissive properties are dependent on macromolecular conformation, which in turn is driven by sequence.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 3","pages":"276–283"},"PeriodicalIF":0.0,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7c/93/lg2c00070.PMC10273412.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10018973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-02-08DOI: 10.1021/acspolymersau.3c00001
Arthi Jayaraman*, and , Harm-Anton Klok*,
{"title":"ACS Polymers Au’s Grand Challenges in Polymer Science","authors":"Arthi Jayaraman*, and , Harm-Anton Klok*, ","doi":"10.1021/acspolymersau.3c00001","DOIUrl":"https://doi.org/10.1021/acspolymersau.3c00001","url":null,"abstract":"W are happy to present this first collection of Perspectives on the “Grand Challenges in Polymer Science”. These six Perspectives from world-leading experts in various subfields of polymer science and engineering present their views on the important problems that researchers in the polymer community could tackle to find sustainable long-term solutions. Some of these technical questions are new as the field evolves, some are yet to be answered due to limitations in existing�synthetic, characterization, computation/theory� methods, while others have been answered partially or continue to be debated by researchers with opposing scientific observations. The Perspectives in this virtual special issue highlight the past, present, and future for each of these complex problems in polymer science. As we started writing this Editorial on ACS Polymers Au’s “Grand Challenges in Polymer Science”, it dawned on us that this issue comes exactly five years after Tim Lodge, then Editor-in-Chief of Macromolecules, penned his Editorial “Celebrating 50 years of Macromolecules”. In his retrospective and forward-looking Editorial, he presented his thoughts on the “top ten technological and intellectual achievements” in polymer science over the past five decades as well as the “top ten current challenges” in polymer science that remained to be solved. Table 1 below lists these top ten current challenges from his Editorial.","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 1","pages":"1–4"},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-02-08DOI: 10.1021/acspolymersau.2c00067
Friederike K. Metze, and , Harm-Anton Klok*,
{"title":"Supramolecular Polymer Brushes","authors":"Friederike K. Metze, and , Harm-Anton Klok*, ","doi":"10.1021/acspolymersau.2c00067","DOIUrl":"10.1021/acspolymersau.2c00067","url":null,"abstract":"<p >Polymer brushes are thin polymer films that consist of densely grafted, chain-end tethered polymers. These thin polymer films can be produced either by anchoring presynthesized chain-end functional polymers to the surface of interest (“grafting to”), or by using appropriately modified surfaces to facilitate growth of polymer chains from the substrate (“grafting from”). The vast majority of polymer brushes that have been prepared and studied so far involved chain-end tethered polymer assemblies that are anchored to the surface via covalent bonds. In contrast, the use of noncovalent interactions to prepare chain-end tethered polymer thin films is much less explored. Anchoring or growing polymer chains using noncovalent interactions results in supramolecular polymer brushes. Supramolecular polymer brushes may possess unique chain dynamics as opposed to their covalently tethered counterparts, which could provide avenues to, for example, renewable or (self-)healable surface coatings. This Perspective article provides an overview of the various approaches that have been used so far to prepare supramolecular polymer brushes. After presenting an overview of the various approaches that have been used to prepare supramolecular brushes via the “grafting to” strategy, examples will be presented of strategies that have been successfully applied to produce supramolecular polymer brushes via “grafting from” methods.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 3","pages":"228–238"},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.2c00067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10037016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-02-01DOI: 10.1021/acspolymersau.2c00066
Yilin Li, Sohee Park, Kasturi Sarang, Hao Mei, Chia-Ping Tseng, Zhiqi Hu, Dongyang Zhu, Xiaoyi Li, Jodie Lutkenhaus* and Rafael Verduzco*,
{"title":"Mixed Ionic–Electronic Conduction Increases the Rate Capability of Polynaphthalenediimide for Energy Storage","authors":"Yilin Li, Sohee Park, Kasturi Sarang, Hao Mei, Chia-Ping Tseng, Zhiqi Hu, Dongyang Zhu, Xiaoyi Li, Jodie Lutkenhaus* and Rafael Verduzco*, ","doi":"10.1021/acspolymersau.2c00066","DOIUrl":"10.1021/acspolymersau.2c00066","url":null,"abstract":"<p >Conjugated polymers offer a number of unique and useful properties for use as battery electrodes, and recent work has reported that conjugated polymers can exhibit excellent rate performance due to electron transport along the polymer backbone. However, the rate performance depends on both ion and electron conduction, and strategies for increasing the intrinsic ionic conductivities of conjugated polymer electrodes are lacking. Here, we investigate a series of conjugated polynapthalene dicarboximide (PNDI) polymers containing oligo(ethylene glycol) (EG) side chains that enhance ion transport. We produced PNDI polymers with varying contents of alkylated and glycolated side chains and investigated the impact on rate performance, specific capacity, cycling stability, and electrochemical properties through a series of charge–discharge, electrochemical impedance spectroscopy, and cyclic voltammetry measurements. We find that the incorporation of glycolated side chains results in electrode materials with exceptional rate performance (up to 500C, 14.4 s per cycle) in thick (up to 20 μm), high-polymer-content (up to 80 wt %) electrodes. Incorporation of EG side chains enhances both ionic and electronic conductivities, and we found that PNDI polymers with at least 90% of NDI units containing EG side chains functioned as carbon-free polymer electrodes. This work demonstrates that polymers with mixed ionic and electronic conduction are excellent candidates for battery electrodes with good cycling stability and capable of ultra-fast rate performance.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 3","pages":"267–275"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/aa/lg2c00066.PMC10273410.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9717298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-01-18DOI: 10.1021/acspolymersau.2c00053
Tyler B. Martin*, and , Debra J. Audus*,
{"title":"Emerging Trends in Machine Learning: A Polymer Perspective","authors":"Tyler B. Martin*, and , Debra J. Audus*, ","doi":"10.1021/acspolymersau.2c00053","DOIUrl":"10.1021/acspolymersau.2c00053","url":null,"abstract":"<p >In the last five years, there has been tremendous growth in machine learning and artificial intelligence as applied to polymer science. Here, we highlight the unique challenges presented by polymers and how the field is addressing them. We focus on emerging trends with an emphasis on topics that have received less attention in the review literature. Finally, we provide an outlook for the field, outline important growth areas in machine learning and artificial intelligence for polymer science and discuss important advances from the greater material science community.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 3","pages":"239–258"},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.2c00053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10018975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}