ACS polymers AuPub Date : 2023-12-13DOI: 10.1021/acspolymersau.3c00026
Zixian Cui, Matthew A. Crawford, Blake A. Rumble, Megan M. Krogh, Molly A. Hughes and Rachel A. Letteri*,
{"title":"Antimicrobial Peptide–Poly(ethylene glycol) Conjugates: Connecting Molecular Architecture, Solution Properties, and Functional Performance","authors":"Zixian Cui, Matthew A. Crawford, Blake A. Rumble, Megan M. Krogh, Molly A. Hughes and Rachel A. Letteri*, ","doi":"10.1021/acspolymersau.3c00026","DOIUrl":"10.1021/acspolymersau.3c00026","url":null,"abstract":"<p >Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics for treating infections caused by drug-resistant bacteria; yet, many peptides are limited by toxicity to eukaryotic cells and instability in biological environments. Conjugation to linear polymers that reduce cytotoxicity and improve stability, however, often decreases antimicrobial activity. In this work, we combine the biocompatibility advantages of poly(ethylene glycol) (PEG) with the efficacy merits of nonlinear polymer architectures that accommodate multiple AMPs per molecule. By conjugating a chemokine-derived AMP, stapled Ac-P9, to linear and star-shaped PEG with various arm numbers and lengths, we investigated the role of molecular architecture in solution properties (i.e., ζ-potential, size, and morphology) and performance (i.e., antimicrobial activity, hemolysis, and protease resistance). Linear, 4-arm, and 8-arm conjugates with 2–2.5 kDa PEG arms were found to form nanoscale structures in solution with lower ζ-potentials relative to the unconjugated AMP, suggesting that the polymer partially shields the cationic AMP. Reducing the length of the PEG arms of the 8-arm conjugate to 1.25 kDa appeared to better reveal the peptide, seen by the increased ζ-potential, and promote assembly into particles with a larger size and defined spherical morphology. The antimicrobial effects exerted by the short 8-arm conjugate rivaled that of the unconjugated peptide, and the AMP constituents of the short 8-arm conjugate were protected from proteolytic degradation. All other conjugates examined also imparted a degree of protease resistance, but exhibited some reduced level of antimicrobial activity as compared to the AMP alone. None of the conjugates caused significant cytotoxic effects, which bodes well for their future potential to treat infections. While enhancing proteolytic stability often comes with the cost of lower antimicrobial activity, we have found that presenting AMPs at high density on a neutral nonlinear polymer strikes a favorable balance, exhibiting both enhanced stability and high antimicrobial activity.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"4 1","pages":"45–55"},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-12-08DOI: 10.1021/acspolymersau.3c00031
Dan My Nguyen, Chun-Yuan Lo, Tianzheng Guo, Taewook Choi, Shalini Sundar, Zachary Swain, Yuhang Wu, Charles Dhong and Laure V. Kayser*,
{"title":"One Pot Photomediated Formation of Electrically Conductive Hydrogels","authors":"Dan My Nguyen, Chun-Yuan Lo, Tianzheng Guo, Taewook Choi, Shalini Sundar, Zachary Swain, Yuhang Wu, Charles Dhong and Laure V. Kayser*, ","doi":"10.1021/acspolymersau.3c00031","DOIUrl":"10.1021/acspolymersau.3c00031","url":null,"abstract":"<p >Electrically conductive hydrogels represent an innovative platform for the development of bioelectronic devices. While photolithography technologies have enabled the fabrication of complex architectures with high resolution, photoprinting conductive hydrogels is still a challenging task because the conductive polymer absorbs light which can outcompete photopolymerization of the insulating scaffold. In this study, we introduce an approach to synthesizing conductive hydrogels in one step. Our approach combines the simultaneous photo-cross-linking of a polymeric scaffold and the polymerization of 3,4-ethylene dioxythiophene (EDOT), without additional photocatalysts. This process involves the copolymerization of photo-cross-linkable coumarin-containing monomers with sodium styrenesulfonate to produce a water-soluble poly(styrenesulfonate-<i>co</i>-coumarin acrylate) (P(SS-<i>co</i>-CoumAc)) copolymer. Our findings reveal that optimizing the [SS]:[CoumAc] ratio at 100:5 results in hydrogels with the strain at break up to 16%. This mechanical resilience is coupled with an electronic conductivity of 9.2 S m<sup>–1</sup> suitable for wearable electronics. Furthermore, the conductive hydrogels can be photopatterned to achieve micrometer-sized structures with high resolution. The photo-cross-linked hydrogels are used as electrodes to record stable and reliable surface electromyography (sEMG) signals. These novel photo-cross-linkable polymers combined with one-pot PEDOT (poly-EDOT) polymerization open possibilities for rapidly prototyping complex bioelectronic devices and creating custom-designed interfaces between electronics and biological systems.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"4 1","pages":"34–44"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138555348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-12-05DOI: 10.1021/acspolymersau.3c00025
Erin C. Day, Supraja S. Chittari, Matthew P. Bogen and Abigail S. Knight*,
{"title":"Navigating the Expansive Landscapes of Soft Materials: A User Guide for High-Throughput Workflows","authors":"Erin C. Day, Supraja S. Chittari, Matthew P. Bogen and Abigail S. Knight*, ","doi":"10.1021/acspolymersau.3c00025","DOIUrl":"10.1021/acspolymersau.3c00025","url":null,"abstract":"<p >Synthetic polymers are highly customizable with tailored structures and functionality, yet this versatility generates challenges in the design of advanced materials due to the size and complexity of the design space. Thus, exploration and optimization of polymer properties using combinatorial libraries has become increasingly common, which requires careful selection of synthetic strategies, characterization techniques, and rapid processing workflows to obtain fundamental principles from these large data sets. Herein, we provide guidelines for strategic design of macromolecule libraries and workflows to efficiently navigate these high-dimensional design spaces. We describe synthetic methods for multiple library sizes and structures as well as characterization methods to rapidly generate data sets, including tools that can be adapted from biological workflows. We further highlight relevant insights from statistics and machine learning to aid in data featurization, representation, and analysis. This Perspective acts as a “user guide” for researchers interested in leveraging high-throughput screening toward the design of multifunctional polymers and predictive modeling of structure–property relationships in soft materials.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"406–427"},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-11-20DOI: 10.1021/acspolymersau.3c00028
Sai Dileep Kumar Seera, and , Christian W. Pester*,
{"title":"Surface-Initiated PET-RAFT via the Z-Group Approach","authors":"Sai Dileep Kumar Seera, and , Christian W. Pester*, ","doi":"10.1021/acspolymersau.3c00028","DOIUrl":"10.1021/acspolymersau.3c00028","url":null,"abstract":"<p >Surface-initiated reversible addition–fragmentation chain transfer (SI-RAFT) is a user-friendly and versatile approach for polymer brush engineering. For SI-RAFT, synthetic strategies follow either surface-anchoring of radical initiators (e.g., azo compounds) or anchoring RAFT chain transfer agents (CTAs) onto a substrate. The latter can be performed via the R-group or Z-group of the CTA, with the previous scientific focus in literature skewed heavily toward work on the R-group approach. This contribution investigates the alternative: a Z-group approach toward light-mediated SI photoinduced electron transfer RAFT (SI-PET-RAFT) polymerization. An appropriate RAFT CTA is synthesized, immobilized onto SiO<sub>2</sub>, and its ability to control the growth (and chain extension) of polymer brushes in both organic and aqueous environments is investigated with different acrylamide and methacrylate monomers. O<sub>2</sub> tolerance allows Z-group SI-PET-RAFT to be performed under ambient conditions, and patterning surfaces through photolithography is illustrated. Polymer brushes are characterized via X-ray photoelectron spectroscopy (XPS), ellipsometry, and water contact angle measurements. An examination of polymer brush grafting density showed variation from 0.01 to 0.16 chains nm<sup>–2</sup>. Notably, in contrast to the R-group SI-RAFT approach, this chemical approach allows the growth of intermittent layers of polymer brushes underneath the top layer without changing the properties of the outermost surface.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"428–436"},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-11-16DOI: 10.1021/acspolymersau.3c00020
Walter W. Young, and , Reika Katsumata*,
{"title":"Intermediate Polymer Relaxation Explains the Anomalous Rheology of Nanocomposites with Ultrasmall Attractive POSS Nanoparticles","authors":"Walter W. Young, and , Reika Katsumata*, ","doi":"10.1021/acspolymersau.3c00020","DOIUrl":"10.1021/acspolymersau.3c00020","url":null,"abstract":"<p >The rheological properties of entangled polymers loaded with very small, strongly attractive polyhedral oligomeric silsesquioxane (POSS) fillers differ from that of nanocomposites with larger fillers by (1) the shorter breadth of the entanglement plateau and (2) the relatively unchanged terminal viscosity with increasing POSS loading. Although such anomalous rheological properties can rewrite the property–processing map of materials (e.g., high glass transition temperature and low viscosity), their mechanism remains unclear. In this study, we report that polymer relaxations on intermediate time scales between α and entire-chain relaxation, so-called “slower processes”, are responsible for this unusual rheological behavior of poly(2-vinylpyridine)/octa(aminophenyl)silsesquioxane (P2VP/OAPS) nanocomposites. To uncover the effects of entanglements on the nanocomposite dynamics, rheometry is used for variable matrix molecular weights. Results show a systematic change in the rheological response, which is independent of the molecular weight, and in turn, the presence of entanglements. This supports a physical interpretation that a slower process dominates the rheological response of the material at intermediate frequencies on length scales larger than the segment length or the OAPS diameter, while the underlying physical time scales associated with the entanglement relaxation remain unchanged. Such insights are anticipated to assist the future rational design of other highly attractive and ultrasmall nanoparticles that enable a fine-tuned rheological response of nanocomposites across multiple length scales.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"466–474"},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-11-08DOI: 10.1021/acspolymersau.3c00022
Andrew J. King, Jiashu Wang, Tianchang Liu, Adharsh Raghavan, Neil C. Tomson* and Aleksandr V. Zhukhovitskiy*,
{"title":"Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold","authors":"Andrew J. King, Jiashu Wang, Tianchang Liu, Adharsh Raghavan, Neil C. Tomson* and Aleksandr V. Zhukhovitskiy*, ","doi":"10.1021/acspolymersau.3c00022","DOIUrl":"10.1021/acspolymersau.3c00022","url":null,"abstract":"<p >Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp<sup>2</sup>–Csp<sup>3</sup> and Csp<sup>2</sup>–Csp<sup>2</sup> cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp<sup>2</sup>–Csp<sup>2</sup> cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"475–481"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135340542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete Miktoarm Star Block Copolymers with Tailored Molecular Architecture","authors":"Zhuang Ma, Zhongguo Liu, Tianyu Zheng, Zhanhui Gan, Rui Tan* and Xue-Hui Dong*, ","doi":"10.1021/acspolymersau.3c00017","DOIUrl":"10.1021/acspolymersau.3c00017","url":null,"abstract":"<p >Molecular architecture is a critical factor in regulating phase behaviors of the block copolymer and prompting the formation of unconventional nanostructures. This work meticulously designed a library of isomeric miktoarm star polymers with an architectural evolution from the linear-branched block copolymer to the miktoarm star block copolymer and to the star-like block copolymer (i.e., 3AB → 3(AB<sub>1</sub>)B<sub>2</sub> → 3(AB)). All of the polymers have precise chemical composition and uniform chain length, eliminating inherent molecular uncertainties such as chain length distribution or architectural defects. The self-assembly behaviors were systematically studied and compared. Gradually increasing the relative length of the branched B<sub>1</sub> block regulates the ratio between the bridge and loop configuration and effectively releases packing frustration in the formation of the spherical or cylindrical structures, leading to a substantial deflection of phase boundaries. Complex structures, such as Frank–Kasper phases, were captured at a surprisingly higher volume fraction. Rationally regulating the molecular architecture offers rich possibilities to tune the packing symmetry of block copolymers.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"457–465"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135855366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-10-03DOI: 10.1021/acspolymersau.3c00015
Samson Afewerki*, and , Ulrica Edlund*,
{"title":"Engineering an All-Biobased Solvent- and Styrene-Free Curable Resin","authors":"Samson Afewerki*, and , Ulrica Edlund*, ","doi":"10.1021/acspolymersau.3c00015","DOIUrl":"10.1021/acspolymersau.3c00015","url":null,"abstract":"<p >The sustainable production of polymers and materials derived from renewable feedstocks such as biomass is vital to addressing the current climate and environmental challenges. In particular, finding a replacement for current widely used curable resins containing undesired components with both health and environmental issues, such as bisphenol-A and styrene, is of great interest and vital for a sustainable society. In this work, we disclose the preparation and fabrication of an all-biobased curable resin. The devised resin consists of a polyester component based on fumaric acid, itaconic acid, 2,5-furandicarboxylic acid, 1,4-butanediol, and reactive diluents acting as both solvents and viscosity enhancers. Importantly, the complete process was performed solvent-free, thus promoting its industrial applications. The cured biobased resin demonstrates very good thermal properties (stable up to 415 °C), the ability to resist deformation based on the high Young’s modulus of ∼775 MPa, and chemical resistance based on the swelling index and gel content. We envision the disclosed biobased resin having tailorable properties suitable for industrial applications.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"447–456"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135695612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-09-11DOI: 10.1021/acspolymersau.3c00010
Ryohei Ikura, Kota Kajimoto, Junsu Park, Shunsuke Murayama, Yusei Fujiwara, Motofumi Osaki, Tomohiro Suzuki, Hidenori Shirakawa, Yujiro Kitamura, Hiroaki Takahashi, Yasumasa Ohashi, Seiji Obata, Akira Harada, Yuka Ikemoto, Yuta Nishina*, Yasutomo Uetsuji*, Go Matsuba* and Yoshinori Takashima*,
{"title":"Highly Stretchable Stress–Strain Sensor from Elastomer Nanocomposites with Movable Cross-links and Ketjenblack","authors":"Ryohei Ikura, Kota Kajimoto, Junsu Park, Shunsuke Murayama, Yusei Fujiwara, Motofumi Osaki, Tomohiro Suzuki, Hidenori Shirakawa, Yujiro Kitamura, Hiroaki Takahashi, Yasumasa Ohashi, Seiji Obata, Akira Harada, Yuka Ikemoto, Yuta Nishina*, Yasutomo Uetsuji*, Go Matsuba* and Yoshinori Takashima*, ","doi":"10.1021/acspolymersau.3c00010","DOIUrl":"10.1021/acspolymersau.3c00010","url":null,"abstract":"<p >Practical applications like very thin stress–strain sensors require high strength, stretchability, and conductivity, simultaneously. One of the approaches is improving the toughness of the stress–strain sensing materials. Polymeric materials with movable cross-links in which the polymer chain penetrates the cavity of cyclodextrin (CD) demonstrate enhanced strength and stretchability, simultaneously. We designed two approaches that utilize elastomer nanocomposites with movable cross-links and carbon filler (ketjenblack, KB). One approach is mixing SC (a single movable cross-network material), a linear polymer (poly(ethyl acrylate), PEA), and KB to obtain their composite. The electrical resistance increases proportionally with tensile strain, leading to the application of this composite as a stress–strain sensor. The responses of this material are stable for over 100 loading and unloading cycles. The other approach is a composite made with KB and a movable cross-network elastomer for knitting dissimilar polymers (KP), where movable cross-links connect the CD-modified polystyrene (PSCD) and PEA. The obtained composite acts as a highly sensitive stress–strain sensor that exhibits an exponential increase in resistance with increasing tensile strain due to the polymer dethreading from the CD rings. The designed preparations of highly repeatable or highly responsive stress–strain sensors with good mechanical properties can help broaden their application in electrical devices.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 5","pages":"394–405"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS polymers AuPub Date : 2023-08-22DOI: 10.1021/acspolymersau.3c00013
Shota Goto, Kang Kim* and Nobuyuki Matubayasi*,
{"title":"Unraveling the Glass-like Dynamic Heterogeneity in Ring Polymer Melts: From Semiflexible to Stiff Chain","authors":"Shota Goto, Kang Kim* and Nobuyuki Matubayasi*, ","doi":"10.1021/acspolymersau.3c00013","DOIUrl":"10.1021/acspolymersau.3c00013","url":null,"abstract":"<p >Ring polymers are an intriguing class of polymers with unique physical properties, and understanding their behavior is important for developing accurate theoretical models. In this study, we investigate the effect of chain stiffness and monomer density on the static and dynamic behaviors of ring polymer melts using molecular dynamics simulations. Our first focus is on the non-Gaussian parameter of center-of-mass displacement as a measure of dynamic heterogeneity, which is commonly observed in glass-forming liquids. We find that the non-Gaussianity in the displacement distribution increases with the monomer density and stiffness of the polymer chains, suggesting that excluded volume interactions between centers of mass have a strong effect on the dynamics of ring polymers. We then analyze the relationship between the radius of gyration and monomer density for semiflexible and stiff ring polymers. Our results indicate that the relationship between the two varies with chain stiffness, which can be attributed to the competition between repulsive forces inside the ring and from adjacent rings. Finally, we study the dynamics of bond-breakage virtually connected between the centers of mass of rings to analyze the exchanges of intermolecular networks of bonds. Our results demonstrate that the dynamic heterogeneity of bond-breakage is coupled with the non-Gaussianity in ring polymer melts, highlighting the importance of the bond-breaking method in determining the intermolecular dynamics of ring polymer melts. Overall, our study sheds light on the factors that govern the dynamic behaviors of ring polymers.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"437–446"},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41410851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}