{"title":"Coated Bacteria: Advanced Living Materials for Microbial Therapy","authors":"Zhenping Cao, Jinyao Liu","doi":"10.1021/accountsmr.4c00116","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00116","url":null,"abstract":"Living materials represent an emerging and innovative concept at the forefronts of materials science due to the distinctive living characteristics. Living organisms, such as microorganisms, plant cells, and mammalian cells, have been used as the major elements for the fabrication of living materials. Given the favorable features including reproductivity, genetic modifiability, adaptability, and cultivability, bacteria have received increasing attention for the development of engineered living materials. Particularly, owing to the inherent abilities to target and colonize specific in vivo sites, activate immune responses, and inhibit pathogens, bacteria play key roles in maintaining human health and have currently widely exploited as living materials for the preparation of therapeutic agents. However, caused by the innate immunogenicity, metabolic activity, and movability, the use of bacteria-based living materials for therapeutic applications often suffers from poor biosafety and insufficient bioavailability, inevitably resulting in low treatment efficacy. In order to address these challenges, extensive efforts have been invested in designing and engineering various advanced bacteria-based living materials to generate superior therapeutic agents by using genetic modification and surface decoration.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Wang, Hechang Lei*, Yanpeng Qi* and Claudia Felser,
{"title":"Topological Quantum Materials with Kagome Lattice","authors":"Qi Wang, Hechang Lei*, Yanpeng Qi* and Claudia Felser, ","doi":"10.1021/accountsmr.3c0029110.1021/accountsmr.3c00291","DOIUrl":"https://doi.org/10.1021/accountsmr.3c00291https://doi.org/10.1021/accountsmr.3c00291","url":null,"abstract":"<p >Recently, various topological states have undergone a spurt of progress in the field of condensed matter physics. An emerging category of topological quantum materials with kagome lattice has drawn enormous attention. A two-dimensional kagome lattice composed of corner-sharing triangles is a fascinating structural system, which could not only lead to geometrically frustrated magnetism but also have a nontrivial topological electronic structure hosting Dirac points, van Hove singularities, and flat bands. Due to the existence of multiple spin, charge, and orbit degrees of freedom accompanied by the unique structure of the kagome lattice, the interplay between frustrated magnetism, nontrivial topology, and correlation effects is considered to result in abundant quantum states and provides a platform for researching the emergent electronic orders and their correlations.</p><p >In this Account, we will give an overview of our research progress on novel quantum properties in topological quantum materials with kagome lattice. Here, there are mainly two categories of kagome materials: magnetic kagome materials and nonmagnetic ones. On one hand, magnetic kagome materials mainly focus on the 3<i>d</i> transition-metal-based kagome systems, including Fe<sub>3</sub>Sn<sub>2</sub>, Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>, YMn<sub>6</sub>Sn<sub>6</sub>, FeSn, and CoSn. The interplay between magnetism and topological bands manifests vital influence on the electronic response. For example, the existence of massive Dirac or Weyl fermions near the Fermi level significantly enhances the magnitude of Berry curvature in momentum space, leading to a large intrinsic anomalous Hall effect. In addition, the peculiar frustrated structure of kagome materials enables them to host a topologically protected skyrmion lattice or noncoplanar spin texture, yielding a topological Hall effect that arises from the real-space Berry phase. On the other hand, nonmagnetic kagome materials in the absence of long-range magnetic order include CsV<sub>3</sub>Sb<sub>5</sub> with the coexistence of superconductivity, charge density wave state, and band topology and van der Waals semiconductor Pd<sub>3</sub>P<sub>2</sub>S<sub>8</sub>. For these two kagome materials, the tunability of electric response in terms of high pressure or carrier doping helps to reveal the interplay between electronic correlation effects and band topology and discover the novel emergent quantum phenomena in kagome materials.</p>","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 7","pages":"786–796 786–796"},"PeriodicalIF":14.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological Quantum Materials with Kagome Lattice","authors":"Qi Wang, Hechang Lei, Yanpeng Qi, Claudia Felser","doi":"10.1021/accountsmr.3c00291","DOIUrl":"https://doi.org/10.1021/accountsmr.3c00291","url":null,"abstract":"Recently, various topological states have undergone a spurt of progress in the field of condensed matter physics. An emerging category of topological quantum materials with kagome lattice has drawn enormous attention. A two-dimensional kagome lattice composed of corner-sharing triangles is a fascinating structural system, which could not only lead to geometrically frustrated magnetism but also have a nontrivial topological electronic structure hosting Dirac points, van Hove singularities, and flat bands. Due to the existence of multiple spin, charge, and orbit degrees of freedom accompanied by the unique structure of the kagome lattice, the interplay between frustrated magnetism, nontrivial topology, and correlation effects is considered to result in abundant quantum states and provides a platform for researching the emergent electronic orders and their correlations.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor Rosa, Fabio Cameli, Georgios D. Stefanidis, Kevin M. Van Geem
{"title":"Integrating Materials in Non-Thermal Plasma Reactors: Challenges and Opportunities","authors":"Victor Rosa, Fabio Cameli, Georgios D. Stefanidis, Kevin M. Van Geem","doi":"10.1021/accountsmr.4c00041","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00041","url":null,"abstract":"Electricity-driven chemical processes play a crucial role in mitigating the CO<sub>2</sub> footprint of the process industry. Non-thermal plasmas (NTP) hold significant potential for electrifying the chemical industry by activating molecules through electron-based mechanisms in the absence of thermal equilibrium. However, the broad application of NTPs is hampered by their general inability to direct energy toward a specific chemical pathway, limiting their effectiveness as a selective and scalable technology. Therefore, the integration of NTPs with catalytic materials in a single reactor assembly is being considered more and more to overcome this limitation. Recently, two multifunctional plasma concepts have emerged, demonstrated at small scales. The first concept is in-plasma catalysis (IPC), where a solid catalyst is directly exposed to the plasma discharge. The second concept is post-plasma catalysis (PPC), involving a conventional heterogeneous catalytic step following the plasma activation. Another option explores the combination of non-catalytic materials with plasma, leveraging their distinct physiochemical affinities with molecules for improved selectivity (e.g., membranes and adsorbents), through either in-plasma or post-plasma adoption. Despite these possibilities, the limited understanding of interactions between plasma and surface-adsorbed/permeated species, coupled with discharge-related catalysts and material deactivation, often restricts the design choice to post-plasma catalysis. To harness synergies, energy-efficient NTP technologies are essential. In this context, nanosecond-pulsed discharges (NPDs, also known as nanosecond repetitively pulsed, NRP) emerge as potentially disruptive solutions due to their activation of both electronic and thermal channels. This results in high energy efficiency, facilitating applications such as cleavage of C–C, C–O, and N–N bonds and providing sufficiently high temperatures for thermal integration with post-plasma materials. This integration can be tailored to the NPD product distribution, creating a synergy with conventional materials unique to NTPs and enhancing the overall process throughput.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor Rosa, Fabio Cameli, Georgios D. Stefanidis* and Kevin M. Van Geem*,
{"title":"Integrating Materials in Non-Thermal Plasma Reactors: Challenges and Opportunities","authors":"Victor Rosa, Fabio Cameli, Georgios D. Stefanidis* and Kevin M. Van Geem*, ","doi":"10.1021/accountsmr.4c0004110.1021/accountsmr.4c00041","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00041https://doi.org/10.1021/accountsmr.4c00041","url":null,"abstract":"<p >Electricity-driven chemical processes play a crucial role in mitigating the CO<sub>2</sub> footprint of the process industry. Non-thermal plasmas (NTP) hold significant potential for electrifying the chemical industry by activating molecules through electron-based mechanisms in the absence of thermal equilibrium. However, the broad application of NTPs is hampered by their general inability to direct energy toward a specific chemical pathway, limiting their effectiveness as a selective and scalable technology. Therefore, the integration of NTPs with catalytic materials in a single reactor assembly is being considered more and more to overcome this limitation. Recently, two multifunctional plasma concepts have emerged, demonstrated at small scales. The first concept is in-plasma catalysis (IPC), where a solid catalyst is directly exposed to the plasma discharge. The second concept is post-plasma catalysis (PPC), involving a conventional heterogeneous catalytic step following the plasma activation. Another option explores the combination of non-catalytic materials with plasma, leveraging their distinct physiochemical affinities with molecules for improved selectivity (e.g., membranes and adsorbents), through either in-plasma or post-plasma adoption. Despite these possibilities, the limited understanding of interactions between plasma and surface-adsorbed/permeated species, coupled with discharge-related catalysts and material deactivation, often restricts the design choice to post-plasma catalysis. To harness synergies, energy-efficient NTP technologies are essential. In this context, nanosecond-pulsed discharges (NPDs, also known as nanosecond repetitively pulsed, NRP) emerge as potentially disruptive solutions due to their activation of both electronic and thermal channels. This results in high energy efficiency, facilitating applications such as cleavage of C–C, C–O, and N–N bonds and providing sufficiently high temperatures for thermal integration with post-plasma materials. This integration can be tailored to the NPD product distribution, creating a synergy with conventional materials unique to NTPs and enhancing the overall process throughput.</p><p >While promising, further advancements in materials science are necessary to maximize the interplay between high-energy bond breakage in plasma and the selectivity enhancement of integrated materials. Our research group has dedicated extensive efforts to the development of multifunctional two-step plasma reactors, with a particular focus on NPD. This has led to remarkable energy efficiency in non-oxidative coupling of methane (NOCM) and CO<sub>2</sub> splitting. Key applications involved a 3D-printed triply periodic minimal surface (TPMS) copper support with a Pd/Al<sub>2</sub>O<sub>3</sub> catalytic layer and a looping process with a CeO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub> nanostructured scavenger. The potential of such reactors is vast, given the various applications for which conversion ","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 9","pages":"1024–1035 1024–1035"},"PeriodicalIF":14.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Programmable Bacterial Biofilms as Engineered Living Materials","authors":"Yanyi Wang, Qian Zhang, Changhao Ge, Bolin An* and Chao Zhong*, ","doi":"10.1021/accountsmr.3c0027110.1021/accountsmr.3c00271","DOIUrl":"https://doi.org/10.1021/accountsmr.3c00271https://doi.org/10.1021/accountsmr.3c00271","url":null,"abstract":"<p >Biological substances like wood and bone demonstrate extraordinary characteristics of “living” features, such as the ability to self-grow, self-heal upon encountering damage, and sense and adapt to environmental changes. These attributes are crucial for their survival and adaptation in complex environments. In the field of material science, there is a growing interest in developing biomimetic materials that can self-monitor, adapt to environmental conditions, and self-repair when necessary. Such capabilities would extend the lifespan of materials and pave the way for intelligent applications. However, creating materials with autonomy and intelligence on par with biological systems remains a daunting challenge. In this context, synthetic biology offers a promising avenue. It not only allows for harnessing the inherent dynamic properties of living organisms but provides the possibility of imparting additional advanced functionalities beyond the reach of synthetic materials systems. This approach enables the integration of living cells into materials, providing them with naturally endowed or artificially designed traits. These innovative materials, known as Engineered Living Materials (ELMs), represent an emerging category of smart materials capable of autonomous functions, with applications varying from biomedicine to sustainable technology.</p><p >Microbial biofilms, owing to their dynamic and self-organizing features, serve as an exemplary starting point for developing ELMs. Biofilms consist of complex communities of microorganisms residing within three-dimensional (3D) extracellular matrices known as extracellular polymeric substances (EPS). These matrices offer an ideal blueprint for designing ELMs, attributing to their remarkable stability, enhanced resilience against severe conditions, and genetic programmability inherent in the EPS components. Various biofilm-based living materials have been developed using biofilm components such as extracellular structural proteins, bacterial cellulose, and fungal mycelium, with applications ranging from pollution remediation, building construction, clean energy generation, and biomedicine. Drawing on traits shared with natural living systems, those ELMs are divided into three main groups: self-organizing living materials, environmentally responsive living materials, and living composite materials. Self-organizing living materials are created by genetically altering biofilm components, giving rise to new functions while maintaining the intrinsic hierarchical self-assembling features of bacterial biofilms. Environmentally responsive living materials harboring artificially designed gene circuits enable them to monitor external conditions and respond to particular cues. High-performance living composite materials integrate genetically modified biofilms with nonliving or artificial substances, harnessing the unique features and benefits of both biofilm components and synthetic materials. This account provi","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 7","pages":"797–808 797–808"},"PeriodicalIF":14.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanyi Wang, Qian Zhang, Changhao Ge, Bolin An, Chao Zhong
{"title":"Programmable Bacterial Biofilms as Engineered Living Materials","authors":"Yanyi Wang, Qian Zhang, Changhao Ge, Bolin An, Chao Zhong","doi":"10.1021/accountsmr.3c00271","DOIUrl":"https://doi.org/10.1021/accountsmr.3c00271","url":null,"abstract":"Biological substances like wood and bone demonstrate extraordinary characteristics of “living” features, such as the ability to self-grow, self-heal upon encountering damage, and sense and adapt to environmental changes. These attributes are crucial for their survival and adaptation in complex environments. In the field of material science, there is a growing interest in developing biomimetic materials that can self-monitor, adapt to environmental conditions, and self-repair when necessary. Such capabilities would extend the lifespan of materials and pave the way for intelligent applications. However, creating materials with autonomy and intelligence on par with biological systems remains a daunting challenge. In this context, synthetic biology offers a promising avenue. It not only allows for harnessing the inherent dynamic properties of living organisms but provides the possibility of imparting additional advanced functionalities beyond the reach of synthetic materials systems. This approach enables the integration of living cells into materials, providing them with naturally endowed or artificially designed traits. These innovative materials, known as Engineered Living Materials (ELMs), represent an emerging category of smart materials capable of autonomous functions, with applications varying from biomedicine to sustainable technology.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"686 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Hierarchical Micro/Nanostructures for Sodium-Based Battery Anode Materials","authors":"Lihong Xu, Yangjie Liu, Xiang Hu, Yongmin Wu, Zhenhai Wen, Jinghong Li","doi":"10.1021/accountsmr.4c00066","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00066","url":null,"abstract":"To meet the increasing energy demand, the development of rechargeable batteries holds immense potential to extend the limitations of electrochemical performance in energy storage devices and enhances the economic efficiency of the energy storage market. Sodium-based batteries have gained tremendous attention in recent years as a potential alternative to reduce the supply risks concerned with lithium-ion batteries (LIBs) owing to the cost-effectiveness and abundance of sodium resources in earth. However, it is still limited by the large ionic radius of Na<sup>+</sup> and heavy sodium atoms, which lead to a short cycle life and low energy/power density caused by the sluggish reaction kinetics. A pivotal factor in propelling the commercialization of sodium-based batteries lies in the exploration of advanced anode materials that ideally offer increased mass loading, superior energy/power density, and enhanced conductivity. Three-dimensional hierarchical micro/nanostructured (3D-HMNs) materials have achieved significant research interest since they have played a crucial role in improving the performance of sodium-based cells. They have numerous active sites, versatile functionalization, and favorable transport distances for mass/electron, as well as superior electrochemical performances, which are correlated with the nature of structures and composition.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larisa V. Shvanskaya*, and , Alexander N. Vasiliev*,
{"title":"Diverse Magnetic Chains in Inorganic Compounds","authors":"Larisa V. Shvanskaya*, and , Alexander N. Vasiliev*, ","doi":"10.1021/accountsmr.4c0008310.1021/accountsmr.4c00083","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00083https://doi.org/10.1021/accountsmr.4c00083","url":null,"abstract":"<p >In both inorganic and metal–organic compounds, transition metals surrounded by ligands form regular or distorted polyhedra, which can be either isolated or interconnected. Distortion of the polyhedron can be caused by the degeneracy in the population of atomic or molecular orbitals, which can be removed by the cooperative Jahn–Teller effect. This effect is often accompanied by the formation of low-dimensional magnetic structures, of which we will consider only chain, or quasi-one-dimensional, magnetic compounds variety. Magnetic chains are formed when transition metal polyhedra bond through a vertex, edge, or face. Moreover, the magnetic entities can be coupled through various nonmagnetic units like NO<sub>3</sub>, SiO<sub>4</sub>, <i>Pn</i>O<sub>3</sub> or <i>Pn</i>O<sub>4</sub>, <i>Ch</i>O<sub>3</sub> or <i>Ch</i>O<sub>4</sub>, where <i>Pn</i> is the pnictide and <i>Ch</i> is the chalcogen. In most cases, the local environment of the transition metal is represented by oxygen and/or halogens. The prevailing number of chain systems is based on 3<i>d</i> transition metals, albeit 4<i>d</i> and 5<i>d</i> systems attract more and more attention. Mixed 3<i>d</i>–4<i>f</i> single chain magnets became popular objects in metal–organic chemistry.</p><p >Exchange interactions in quasi-one-dimensional systems can differ in sign, but no long-range magnetic order, either ferromagnetic or antiferromagnetic, can be achieved at finite temperatures due to fundamental limitations formulated in the early stages of the development of quantum mechanics. These limitations are summarized in a Mermin–Wagner theorem, which states that no continuous symmetries can be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions <i>d</i> ≤ 2. This means that long-range fluctuations can be created at little energy cost, and they are favored since they increase the entropy. The theorem does not apply to discrete symmetries that can be seen in the two-dimensional Ising model, in which the long-range order occurs at temperatures comparable to the exchange interaction energy. The long-range magnetic order being not the intrinsic property of the chains can appear only due to the interchain interactions if not precluded by the spin gap. The very concept of spin gap plays a key role in the field of low-dimensional magnetism. All research objects in this area can be subdivided into gapped and gapless ones. The amazing variety of manifestations of quasi-one-dimensional magnetism is due to the fact that the chains themselves can differ in a number of parameters. They can be homogeneous or alternating in terms of intrachain exchange interaction. The next-nearest-neighbor exchanges in the chains may compete with the nearest-neighbor exchanges. The chains can be organized by transition metal ions with integer or half-integer spins, and they can be constituted by different spins of the same element or by spins of different magneti","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 7","pages":"836–845 836–845"},"PeriodicalIF":14.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Hierarchical Micro/Nanostructures for Sodium-Based Battery Anode Materials","authors":"Lihong Xu, Yangjie Liu, Xiang Hu, Yongmin Wu, Zhenhai Wen* and Jinghong Li*, ","doi":"10.1021/accountsmr.4c0006610.1021/accountsmr.4c00066","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00066https://doi.org/10.1021/accountsmr.4c00066","url":null,"abstract":"<p >To meet the increasing energy demand, the development of rechargeable batteries holds immense potential to extend the limitations of electrochemical performance in energy storage devices and enhances the economic efficiency of the energy storage market. Sodium-based batteries have gained tremendous attention in recent years as a potential alternative to reduce the supply risks concerned with lithium-ion batteries (LIBs) owing to the cost-effectiveness and abundance of sodium resources in earth. However, it is still limited by the large ionic radius of Na<sup>+</sup> and heavy sodium atoms, which lead to a short cycle life and low energy/power density caused by the sluggish reaction kinetics. A pivotal factor in propelling the commercialization of sodium-based batteries lies in the exploration of advanced anode materials that ideally offer increased mass loading, superior energy/power density, and enhanced conductivity. Three-dimensional hierarchical micro/nanostructured (3D-HMNs) materials have achieved significant research interest since they have played a crucial role in improving the performance of sodium-based cells. They have numerous active sites, versatile functionalization, and favorable transport distances for mass/electron, as well as superior electrochemical performances, which are correlated with the nature of structures and composition.</p><p >In this Account, we mainly provide an overview of our recent research advancements in the utilization of 3D-HMN anode materials in various sodium-based rechargeable batteries, shedding light on the relationship between structure and performance. We commence by presenting tailored synthetic methodologies for creating 3D-HMNs, which encompass template-assisted strategies (hard template, soft template, self-sacrificing template, etc.), electrospinning methods, and 3D printing technologies. Here, the process, structure, advantages/disadvantages of the three synthetic strategies for preparing 3D-HMNs are detailed. Our emphasis is placed on the resulting superstructures, which range from nanoflowers, cuboid-like structures, nanosheets, and nanowires to hierarchical fiber arrangements. We then illustrate the essential advantages made with these materials in a range of sodium-based batteries, covering conventional sodium ion batteries (SIBs), sodium-chalcogen (Na–S, Na–Se, Na–Te) batteries, sodium-based dual-ion batteries (SDIBs), and the corresponding sodium ion hybrid capacitors (SIHCs). The applications of 3D-HMNs in all the sodium-based battery systems are comprehensively discussed, including rational structural design and optimization, microscopic electronic properties, and electrochemical performance. Lastly, we outline the challenges ahead in our endeavor, potential solutions, and future research directions to enhance the performance of 3D-HMNs in sodium-based batteries. It is hoped that this Account will provide some valuable guidelines for rational anode materials design, balancing excell","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 7","pages":"822–835 822–835"},"PeriodicalIF":14.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}