Laura L. Becerra, Nicholas B. Root, Robert S. Ramji, Romke Rouw, Darren J. Lipomi
{"title":"Use of Materials Science to Understand Haptic Perception","authors":"Laura L. Becerra, Nicholas B. Root, Robert S. Ramji, Romke Rouw, Darren J. Lipomi","doi":"10.1021/accountsmr.4c00207","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00207","url":null,"abstract":"The haptic sense captures information arising from the somatosensory system─the sensor system of the body excluding the eyes, ears, nose, and tongue. That is, it captures stimuli arising from the skin (i.e., touch) and from internal structures (i.e., the musculoskeletal system and internal organs). The field of research called <i>haptics</i> is concerned with understanding and manipulating this sense, often using engineered technology, and usually for creating novel or realistic touch sensations. Fundamental to every tactile interaction is an interface between the skin and a material. Given that essentially all material objects are composed of or covered in organic media, we reasoned that we, as organic materials scientists, might be able to contribute to the understanding of the sense of touch by manipulating material properties on the molecular scale. Over time, our research group acquired additional skills in electrical engineering and developed strong collaborations with cognitive and behavioral scientists. With a shared curiosity about the sense of touch, we made what we believe are original contributions to the field of haptics.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phillip M. Greißel, Anna-Sophie Wollny, Yifan Bo, Dominik Thiel, René Weiß, Dirk M. Guldi
{"title":"Molecular Acenes for Light Capture, Conversion, and Storage","authors":"Phillip M. Greißel, Anna-Sophie Wollny, Yifan Bo, Dominik Thiel, René Weiß, Dirk M. Guldi","doi":"10.1021/accountsmr.4c00305","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00305","url":null,"abstract":"Efficient photovoltaics (PV) require capturing and converting solar energy across a broad range of energy. Losses due to thermalization and sub-bandgap photons place, however, significant boundaries on the performance of solar cells. For conventional single-junction cells, the theoretical maximum power conversion efficiency is capped at 33%, a constraint known as the detailed balance limit. Realizing the full potential of PVs requires developing novel strategies to overcome this fundamental obstacle. This Account describes the photon-management capabilities of acenes and addresses these fundamental losses en-route toward enhancing PV performances.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João Marreiros, Yuxiang Wang, MinGyu Song, William J. Koros, Matthew J. Realff, Christopher W. Jones, Ryan P. Lively
{"title":"Fiber Sorbents – A Versatile Platform for Sorption-Based Gas Separations","authors":"João Marreiros, Yuxiang Wang, MinGyu Song, William J. Koros, Matthew J. Realff, Christopher W. Jones, Ryan P. Lively","doi":"10.1021/accountsmr.4c00201","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00201","url":null,"abstract":"Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Woo Je Chang, Allison M. Green, Zarko Sakotic, Daniel Wasserman, Thomas M. Truskett, Delia J. Milliron
{"title":"Plasmonic Metal Oxide Nanocrystals as Building Blocks for Infrared Metasurfaces","authors":"Woo Je Chang, Allison M. Green, Zarko Sakotic, Daniel Wasserman, Thomas M. Truskett, Delia J. Milliron","doi":"10.1021/accountsmr.4c00302","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00302","url":null,"abstract":"Metamaterials operating at infrared (IR) frequencies have garnered significant attention due to the opportunities for resonant interactions with vibrational modes of molecules and materials and manipulation of thermal emission. These metamaterials usually consist of periodic arrangements of subwavelength scale metallic or dielectric elements, patterned either top-down by nanolithographic methods or bottom-up by nanocrystal (NC) assembly. However, conventional metals are inherently constrained by their fixed electron concentrations, which limits the degrees of freedom in the design of the meta-atom unit cells to achieve the desired optical response. In this context, doped metal oxide NCs, with the prototypical case being tin-doped indium oxide (ITO) NCs, are exceptional candidates for self-assembled IR metamaterials, owing to their relatively low and synthetically tunable electron concentrations that govern the frequencies of their IR plasmon resonances. Focusing on ITO NCs as building blocks, this Account describes recent progress in the synthetic tuning of NC optical properties, NC superlattice monolayer preparation methods for fabricating IR resonant metamaterials, and the emerging understanding of the optical response, facilitated by recently developed simulation methods.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Piezoionic Skin Sensors for Wearable Applications","authors":"Chao Lu, Xiaohong Zhang, Xi Chen","doi":"10.1021/accountsmr.4c00315","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00315","url":null,"abstract":"Piezoionic skin sensors are one kind of artificial electrical skin that can output sensing signals in response to external strain or stress stimulus with merits of flexibility, lightness, scalability, and high sensitivity. They have been emerging as an important platform in artificial intelligence, such as in smart healthcare, bionic robotics, and microelectromechanical systems. Piezoionic sensors are typically composed of an electrolyte laminated with symmetric electrodes and are based on ion migration and redistribution under a gradient strain or stress field. However, existing challenges significantly impede the sensing performance of piezoionic sensors, including the low electromechanical coupling efficiency of the electrode materials, instability of electrolyte materials, and strain-induced interface separation of sensor interfaces. In recent years, our group and collaborators have made attempts addressing the as-mentioned critical challenges in order to achieve flexible piezoionic sensors with satisfying performance for wearable smart applications. First, for the electromechanical coupling efficiency of electrode materials, we have developed various electrode materials with highly efficient ion storage and transfer, such as graphdiyne, quinone composites, and graphitic carbon nitride. These materials present superior electrical and mechanical properties with enhanced electromechanical coupling efficiency. Second, in order to improve the stability of electrolytes, especially in an air environment, we have developed ionogel electrolytes instead of conventional hydrogel electrolytes. Ionogels contain highly stable ionic liquids, which effectively improve the air stability of sensor electrolytes, and the sensing properties of devices are preserved even after several months. Third, with regard to sensor interface separation, we have engineered stable material interfaces for piezoionic sensors with elaborate structures. The as-designed tree-root-inspired interfaces show high mechanical stability under various flexible conditions, and the piezoionic sensors display negligible performance deterioration under thousands of bending cycles in an ambient environment. Finally, we have obtained flexible piezoionic sensors and studied their practical applications, such as wearable electronics, health monitoring, and smart detections. For example, we have realized the accurate detection of blood pressure based on an out-of-plane piezoionic mechanism. This innovative technique completely avoids the cuff issue that commercial sphygmomanometers have. Moreover, we have developed multifinger-touch piezoionic sensor arrays for effective braille recognition, which have the potential to eliminate communication barriers with sight-impaired people. Human voices can be easily differentiated by detecting vocal-cord vibrations based on captured sensing signals with obviously different patterns. This smart technique is promising for extended and applied use in virtual re","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifunctional Fluorescent Probes Unveiling Complex Pathways in Alzheimer’s Disease Pathogenesis","authors":"Priyam Ghosh, Parameswar Krishnan Iyer","doi":"10.1021/accountsmr.4c00303","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00303","url":null,"abstract":"Alzheimer’s disease (AD) is a complex neurological disorder with a progressive nature, posing challenges in diagnosis and treatment. It is characterized by the formation of Aβ plaques and neurofibrillary tangles (NFTs), which have been the focus of clinical diagnosis and treatment. Despite decades of research, the elusive nature of AD has made it difficult to develop widely recognized diagnostic and treatment methods. However, recent advances have led to new diagnostic and therapeutic techniques targeting Aβ and tau. These technologies aim to address gaps in our understanding by targeting biomarkers using multifunctional fluorescent organic-molecule-based theranostics. There is a leading hypothesis that Aβ and its oligomers are crucial pathogenic features in AD-afflicted brains. Metals found in Aβ plaques have been linked to AD, contributing to oxidative stress and stabilizing toxic Aβ oligomers. Drug research is addressing AD’s diverse toxicity, including protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation. Drug development is adopting multifaceted approaches, focusing on the intricate interaction of AD contributors. Diverse diagnostic techniques and innovative drug development tactics are crucial for AD diagnosis and therapy advances.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"214 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry Manipulation of Two-Dimensional Semiconductors by Janus Structure","authors":"Xueqiu Zheng, Yi Zhou, Yunfan Guo","doi":"10.1021/accountsmr.4c00236","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00236","url":null,"abstract":"Figure 1. Schematic diagram of structure, synthesis, properties and performance of Janus TMDCs. Reproduced with permission from refs (2−5). Copyright 2021 The Authors, 2021 American Chemical Society, 2023 The Authors, 2017 American Chemical Society. Figure 2. Structures of Janus TMDCs and their heterostructures. (a) Lattice structures of monolayer 1T’ MoSSe and 2H MoSSe. (b) Schematic illustration of the topological band inversion of 1T’ MoSSe (left) and 2H MoSSe (right). Reproduced with permission from ref (4). Copyright 2023 The Authors. (c) Schematic illustration of a monolayer lateral multi-heterostructure composed with MoS<sub>2</sub>-Janus MoSSe-Janus MoSeS-MoSe<sub>2</sub>. (d) Kelvin probe force microscope image of monolayer lateral multi-heterostructure composed of MoS<sub>2</sub>–MoSSe-MoSeS-MoSe<sub>2</sub>. Reproduced with permission from ref (2). Copyright 2021 The Authors. (e) Schematic illustration of MoSSe/MoS<sub>2</sub> vertical heterostructure. (f) Optical microscopy (OM) images of Janus heterostructures with AA, AB, AAA, AAB, and ABA stacking modes. Scale bars: 4 μm. Scale bars: 1.2 μm. Reproduced with permission from ref (6). Copyright 2020 American Chemical Society. Figure 3. Synthesis of Janus TMDCs and their lateral heterostructures. (a) Contrast of activation energy barriers between RT-ALS strategy (red) and conventional substitution in high temperature (blue). (b) Raman spectra of pristine monolayer MoS<sub>2</sub>, Janus MoSSe, and converted MoSe<sub>2</sub>. (c) Spatially resolved Raman mapping for A<sub>1g</sub> mode intensity of a monolayer multi-heterostructure made with MoS<sub>2</sub>–MoSSe-MoSeS-MoSe<sub>2</sub>. Reproduced with permission from ref (2). Copyright 2021 The Authors. Figure 4. Properties and potential applications of Janus TMDCs. (a) HHG image of 1T’ MoSSe observed by CCD camera. (b) Left: schematic illustration of angle-resolved SHG setup measuring out-of-plane dipole of Janus MoSSe. Right: angle-dependent SHG intensity ratio between <i>p</i> and <i>s</i> polarization (I<sub>p</sub> and I<sub>s</sub>) in 1T’ MoSSe, 2H MoSSe, and 2H MoS<sub>2</sub>. Reproduced with permission from ref (4). Copyright 2023 The Authors. (c) Calculated volcano curve of hydrogen evolution reaction (HER) of various catalysts, including Janus WSSe. Reproduced with permission from ref (13). Copyright 2018 American Chemical Society. (d) DFT calculation of shift current susceptibility tensor element σ<sub><i>xzx</i></sub><sup>(2)</sup> and σ<sub><i>zxx</i></sub><sup>(2)</sup>. The dark (red) blue curve indicates shift current for Janus MoSeS (MoSSe) monolayer. Reproduced with permission from ref (15). Copyright 2022 American Chemical Society. <b>Xueqiu Zheng</b> received her B.S. Degree in Department of Chemistry in Zhejiang University in 2023. She is a Master degree candidate in Department of Chemistry in Zhejiang University currently. Her research focuses on the controllable synthesis of Janus TMDCs and their heterostructur","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"van der Waals Gap Engineering of Emergent Two-Dimensional Materials","authors":"Zejun Li, Zhi Zhang, Jiong Lu","doi":"10.1021/accountsmr.4c00270","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00270","url":null,"abstract":"Layered materials bound by weak van der Waals (vdW) interactions offer a rich platform for exploring intriguing fundamental science in the two-dimensional (2D) limit and advancing technological innovations. Transition from bulk to 2D geometry results in profound alterations in electronic structures and crystallographic symmetries, giving rise to a plethora of novel physical effects and functionalities. Due to their atomic-scale thinness, 2D materials with a high specific surface area enable post-processing chemical modification of their basal planes to further regulate their intrinsic physical properties. Moreover, the interfacial effects induced by surface modifications can modulate properties without altering the original lattice, facilitating the emergence of novel electronic phases and exotic quantum phenomena. Consequently, extensive research is delving into surface modifications of 2D materials, paving the way to further expand the research fields of 2D materials.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soyun Joo, Uichang Jeong, Chaewon Gong, Seungbum Hong
{"title":"Bridging Mechanical and Electrical Analyses in AFM: Advances, Techniques, and Applications","authors":"Soyun Joo, Uichang Jeong, Chaewon Gong, Seungbum Hong","doi":"10.1021/accountsmr.4c00268","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00268","url":null,"abstract":"Microscopy has long expanded humanity’s understanding of the microscopic world, transcending limitations of the naked eye. The atomic force microscope (AFM), in particular, marks a major advancement in this field, enabling nanoscale investigations of materials through direct physical probing of their surface. Unlike traditional microscopes that use light or electrons, AFM’s unique methodology allows for both imaging on the atomic scale and precise manipulation of a material’s mechanical, electrical, and chemical properties. A key advantage also lies in its capacity for multimodal analysis, where multiple properties can be simultaneously measured to provide comprehensive insights into material behavior.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zaki N. Zahran, Yuta Tsubonouchi, Debraj Chandra, Masayuki Yagi
{"title":"Material Hunting of Advanced Metal Oxide Films for Electro- and Photoelectrocatalysis Using a Mixed Metal-Imidazole Casting (MiMIC) Method","authors":"Zaki N. Zahran, Yuta Tsubonouchi, Debraj Chandra, Masayuki Yagi","doi":"10.1021/accountsmr.4c00355","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00355","url":null,"abstract":"Electrochemical and photoelectrochemical conversion of renewable energy sources into useful chemicals and fuels is of paramount importance for future sustainable technologies. Renewable energy conversion requires catalysts for multielectron redox reactions such as water oxidation and reduction (toward water splitting systems). Developing efficient catalysts for multielectron redox reactions is a great challenge in current science and technology. Metal oxides have been extensively researched to be applied to a large variety of photonic and electronic devices due to the wide range of electronic properties of conducting, semiconducting, and insulating and diverse catalytic properties at their surface depending on the exposing facet, as well as physical and chemical robustness under ambient conditions. We aspire to the development of an easy technique available for large-scale production of metal oxide films based on simple casting and calcination to adopt a strategy for controlling the formation and growth of metal oxide films by ligands to metal centers in precursors. We have developed an easy preparation technique of mono- and multimetallic oxide films, termed the “mixed metal-imidazole casting (MiMIC) method”, by which metal oxide films are generated tightly on various electrode substrates by casting precursor solutions or suspensions containing component metal salts in a mixed solvent of methanol/imidazole derivative as a ligand, followed by calcination. The general versatility of the MiMIC method encourages us to hunt new metal oxide films as efficient catalysts for the multielectron redox reactions, because the rigid adherability of films formed on a current collector electrode is necessary for essential evaluation of the catalytic performance of the metal oxide films. In this Account, we expound synthesis and characterization of a variety of mono- and multimetallic oxide films using the MiMIC method and its application to electro- and photoelectrocatalysis for water splitting and oxygen reduction, which are important key reactions in future sustainable technology. The adherability of these films onto the electrode surface is prominent although their morphology, crystallinity, and nanostructures depend on the metal oxide materials, which is one of the important factors to induce high performance of the metal oxide films for electro- and photoelectrocatalysis. Imidazole derivatives were found to act as a source of nitrogen for the N-doping to a metal oxide lattice, and a structure-directing agent for the anisotropic crystallization, as well as a binder among constituting nanoparticles to lead to the rigid adherability of films on the substrate. These findings surely expand material development to a great extent, by not only changing the metal compositions but also being based on band engineering due to doping of representative elements and crystal facet control of metal oxide films.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}