Accounts of materials research最新文献

筛选
英文 中文
Intriguing Facets of Solution Processable Cross-Linked Porous Organic Polymers 可溶液加工交联多孔有机聚合物的迷人面貌
Accounts of materials research Pub Date : 2024-09-18 DOI: 10.1021/accountsmr.4c00197
Madhurima Sarkar, Suprabhat Sarkar, Monisha Saha, Khushi Luvani, Abhijit Patra
{"title":"Intriguing Facets of Solution Processable Cross-Linked Porous Organic Polymers","authors":"Madhurima Sarkar, Suprabhat Sarkar, Monisha Saha, Khushi Luvani, Abhijit Patra","doi":"10.1021/accountsmr.4c00197","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00197","url":null,"abstract":"Porous organic polymers (POPs) are organic networks distinguished by their highly cross-linked structures and their intrinsic porosity. The growing emphasis on POPs is driven by their exceptional hydrothermal stability and diverse application prospects. However, traditional metal-catalyzed high-temperature reactions using rigid building units yield POPs in insoluble powder form, posing challenges for processing into different shapes for device integration and optoelectronic applications. The successful fabrication of a soluble porous organic polymer relies on the employment of specific design strategies and reaction conditions to restrict the molecular weight and extensive cross-linking. In recent decades, researchers have been actively exploring various design strategies, such as limiting molecular weight through hyperbranching and employing controlled polymer growth strategies, to produce solution processable amorphous porous organic polymers. However, targeted synthesis for specific applications remains underdeveloped, justifying the need for an in-depth deliberation of currently available strategies and possible future avenues. In this context, this Account highlights the advancements in the field of solution processable amorphous cross-linked porous organic polymers (SCPOPs), describing diverse design strategies and function-led applications. In order to address the challenges associated with the solution processing of amorphous cross-linked POPs, our research group has focused on fine-tuning the noncovalent interactions among the molecular building blocks, the key to achieving both porosity and solubility in the resultant porous polymer. Following this principle, we introduce long alkyl chains as flexible groups in the monomer and comonomer units that offer a high degree of rotational freedom and a substantial twist angle. This approach facilitates alleviation of the pronounced π–π stacking interaction and extensive cross-linking, thereby enhancing the solubility of the porous polymer. As a result, the facile interaction between the analytes and inefficiently packed polymer chains with aromatic building units in SCPOPs opens the scope for fluorescence-based nitroaromatic sensing in solution. Further, a stable dispersion of fluorescent porous polymer nanoparticles could be an attractive platform for analyte detection in water with enhanced sensitivity. The porous nature of the fluorescent SCPOPs enables the encapsulation of diverse dye molecules, and controlling the energy transfer efficiency from polymer to dyes results in fluorescence tuning, leading to the emission of white light in solution, nanoparticles, gel, and a thin transparent film. Furthermore, we demonstrate that incorporating alternate donor–acceptor units into the cross-linked polymer leads to the optimum band positions for light-driven redox reactions, such as photooxidation of benzylamine and hydrogen evolution. We investigated a biphasic catalysis route employing solution-p","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Understanding of Catalyst Functioning toward Controlling Selectivity in CO2 Hydrogenation to Higher Hydrocarbons over Fe-Based Catalysts 从了解催化剂功能到控制铁基催化剂在 CO2 加氢生成更高碳氢化合物过程中的选择性
Accounts of materials research Pub Date : 2024-09-17 DOI: 10.1021/accountsmr.4c00160
Qingxin Yang, Evgenii V. Kondratenko
{"title":"From Understanding of Catalyst Functioning toward Controlling Selectivity in CO2 Hydrogenation to Higher Hydrocarbons over Fe-Based Catalysts","authors":"Qingxin Yang, Evgenii V. Kondratenko","doi":"10.1021/accountsmr.4c00160","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00160","url":null,"abstract":"The conversion of carbon dioxide (CO<sub>2</sub>) with hydrogen (H<sub>2</sub>), generated by renewable energy sources, into value-added products is a promising approach to meet future demands for sustainable development. In this context, the hydrogenation of CO<sub>2</sub> (CO<sub>2</sub>-FTS) to higher hydrocarbons (C<sub>2+</sub>), lower olefins, and fuels should be mentioned in particular. These products are used in our daily lives but are currently produced by energy-intensive and CO<sub>2</sub>-emitting oil-based cracking processes. The environmental compatibility and abundance of iron (Fe) used in CO<sub>2</sub>-FTS catalysts are also relevant to sustainable development. The CO<sub>2</sub>-FTS reaction was inspired by the experience accumulated in long-term research on Fischer–Tropsch synthesis with CO (CO-FTS). A simple grafting of catalyst formulations and reaction mechanisms from CO-FTS to CO<sub>2</sub>-FTS has, however, been proven unsatisfactory, likely due to differences in surface adsorbates, chemical potentials of CO and CO<sub>2</sub>, and H<sub>2</sub>O partial pressure. These characteristics affect both the catalyst structure and the reaction pathways. Consequently, CO<sub>2</sub>-FTS provides higher CH<sub>4</sub> selectivity but lower C<sub>2+</sub>-selectivity than does CO-FTS, which appeals to fundamental research to hinder CH<sub>4</sub> formation.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemosynthetic P4HB: A Ten-Year Journey from a “Non-Polymerizable” Monomer to a High-Performance Biomaterial 化学合成 P4HB:从 "不可聚合 "单体到高性能生物材料的十年历程
Accounts of materials research Pub Date : 2024-09-16 DOI: 10.1021/accountsmr.4c00182
Zhen Zhang, Ravikumar R. Gowda, Eugene Y.-X. Chen
{"title":"Chemosynthetic P4HB: A Ten-Year Journey from a “Non-Polymerizable” Monomer to a High-Performance Biomaterial","authors":"Zhen Zhang, Ravikumar R. Gowda, Eugene Y.-X. Chen","doi":"10.1021/accountsmr.4c00182","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00182","url":null,"abstract":"Aliphatic polyesters consisting of hydrolytically and/or enzymatically degradable ester bonds in each repeating unit possess diverse thermomechanical properties and desired biodegradability and biocompatibility, thus, finding broad applications in biomedical fields. Among them, poly(4-hydroxybutyrate) (P4HB) is a biomaterial receiving particular attention, due to its proper thermal transition temperatures (<i>T</i><sub>g</sub> ∼ – 50 °C, <i>T</i><sub>m</sub> ∼ 60 °C) relative to the environment of living systems, excellent mechanical properties (high toughness and extensibility when molar mass is sufficiently high), and facile degradability in aqueous media where living systems function. The production of P4HB has long relied on biological fermentation, where it is stored in fermented cells and extracted at the end of the fermentation. However, the high production cost of the fermentation process, associated with its slow reaction kinetics and presently limited production volume, hinders broader implementations of P4HB. In addition, biological routes typically produce P4HB with poor control over the polymer molar mass and dispersity, and postfermentation treatment is employed to offer various molar mass P4HB formulations. Considering that chemical catalysis generally offers faster reaction kinetics, more rapid catalyst tuning, a higher degree of control, and better scalability, it would be desirable to develop a chemocatalytic route to access P4HB more rapidly, at scale, and on-demand for tailorable chain lengths and architectures. In this context, developing the effective and efficient chemocatalytic synthesis of P4HB through ring-opening polymerization (ROP) of γ-butyrolactone (γBL), which is bioderived and available at scale, is of great interest and significance.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Self-Assembly of Cellulose Nanocrystal as Custom-Tailored Photonics and Complex Soft Matter 作为定制光子学和复杂软物质的纤维素纳米晶体的受控自组装
Accounts of materials research Pub Date : 2024-09-13 DOI: 10.1021/accountsmr.4c00216
Guang Chu
{"title":"Controlled Self-Assembly of Cellulose Nanocrystal as Custom-Tailored Photonics and Complex Soft Matter","authors":"Guang Chu","doi":"10.1021/accountsmr.4c00216","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00216","url":null,"abstract":"Cellulose is widely distributed in nature and imparts structural integrity and mechanical support to the cell walls of plants, algae, and some bacteria. It has gained significant attention due to the growing demand for the fabrication of sustainable and high-performance materials. Various types of cellulosic materials are involved, among which cellulose nanocrystals (CNCs) emerge as a compelling next-gen material extracted from bulk cellulose, attracting considerable attention from both industry and academia. These rodlike colloidal materials exhibit remarkable mechanical, optical, and thermal properties due to their high aspect ratio, biodegradability, and renewable nature, providing promising opportunities for sustainable solutions to modern complex technological and societal challenges. Particularly noteworthy is the inherent chirality of CNC that triggers spontaneous self-assembly into left-handed helicoidal arrangements, termed cholesteric organization and sustained in both suspension and solid films. This unique property begets long-range ordered liquid crystallinity and polarization-sensitive structural color, highlighting the potential of CNC as a versatile platform for the design and fabrication of artificial functional materials with naturally derived alternatives. Benefiting from the robust self-assembly power of CNC, there is a burgeoning development in the creation of innovative nanocellulose-based materials.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Assembly of Functional Motifs for Artificial Photosynthesis 人工光合作用功能基因的分子组装
Accounts of materials research Pub Date : 2024-09-12 DOI: 10.1021/accountsmr.4c00215
Yan-Xi Tan, Xiang Zhang, Yaobing Wang, Jiannian Yao
{"title":"Molecular Assembly of Functional Motifs for Artificial Photosynthesis","authors":"Yan-Xi Tan, Xiang Zhang, Yaobing Wang, Jiannian Yao","doi":"10.1021/accountsmr.4c00215","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00215","url":null,"abstract":"Natural photosynthesis has produced most of the energy that fuels human society and sustains life on earth. However, with an ever-growing demand for energy, urgent efforts are required to develop artificial systems that mimic the essential processes of natural photosynthesis, including light harvesting/charge separation, photocatalytic water oxidation, energy storage, and catalytic CO<sub>2</sub> reduction. Recent advancements have seen the development of nanoscale photoelectrochemical materials that integrate light absorbers with cocatalysts or redox units for artificial photosynthetic systems. However, the potential of molecular photoelectrochemical materials, which couple electron donor–acceptor (D-A) structures with catalytic or redox-active moieties into a periodic porous aggregate, remains largely underexplored. By combining D–A structures with redox moieties, these materials can enable solar-to-electrochemical energy storage process, while the further incorporation of catalytic sites can extend their application to photo(electro)catalytic water oxidation or CO<sub>2</sub> reduction, thus enabling customized artificial systems. On the other hand, they can enhance energy efficiency by molecular-scale in situ photogenerated charge separation coupled with redox reactions─an exciton-involved redox mechanism─to circumvent the energy losses typically associated with charge carrier transport in nanoscale counterparts. Despite these merits, critical challenges remain with a limited understanding of the structure–functional motif relationship at the molecular level and a shortage of molecular assemblies to enable multifunctional motifs necessary for overall natural photosynthesis mimicry.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Engineering of Cytosolic Delivery Systems for Protein Therapeutics 蛋白质治疗细胞输送系统的合理工程设计
Accounts of materials research Pub Date : 2024-09-10 DOI: 10.1021/accountsmr.4c00149
Jia Lv, Xun Liu, Lichen Yin, Yiyun Cheng
{"title":"Rational Engineering of Cytosolic Delivery Systems for Protein Therapeutics","authors":"Jia Lv, Xun Liu, Lichen Yin, Yiyun Cheng","doi":"10.1021/accountsmr.4c00149","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00149","url":null,"abstract":"Protein therapeutics holds enormous promise for the treatment of various diseases but is limited to extracellular targets because of the membrane impermeable nature of most proteins. Cytosolic protein delivery systems are of great importance in the development of next-generation protein therapeutics. Since proteins are biomacromolecules characterized with limited binding sites, chemical modification or genetic engineering of cargo proteins is usually required to strengthen their binding affinity with the delivery carriers, which, however, may irreversibly impair their bioactivities. As thus, protein delivery systems that can efficiently transport native proteins into the cytosol of living cells with uncompromised bioactivities are highly desired.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lanthanide Functionalized Hydrogen-bonded Organic Framework Hybrid Materials: Luminescence Responsive Sensing, Intelligent Applications and Biomimetic Design 镧系元素功能化氢键有机框架杂化材料:发光响应传感、智能应用和仿生设计
Accounts of materials research Pub Date : 2024-09-09 DOI: 10.1021/accountsmr.4c00218
Kai Zhu, Xin Xu, Bing Yan
{"title":"Lanthanide Functionalized Hydrogen-bonded Organic Framework Hybrid Materials: Luminescence Responsive Sensing, Intelligent Applications and Biomimetic Design","authors":"Kai Zhu, Xin Xu, Bing Yan","doi":"10.1021/accountsmr.4c00218","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00218","url":null,"abstract":"As a distinct category of crystalline porous materials, hydrogen-bonded organic frameworks (HOFs) are assembled from organic building blocks through H-bonding and other weak intermolecular interactions, which position HOFs as a versatile platform for investigating multifunctional porous materials. Aromatic subunits existing in the majority of HOF linkers are responsible for the luminescence exhibited by HOFs upon ultraviolet excitation mostly in nature. Recently, there has been a surge of attention in utilizing luminescent functionalized HOFs for luminescence responsive sensing due to their strong fluorescence and phosphorescence emission, versatile postsynthetic functionalization property, great solution processing performance, outstanding luminescent stability and specific recognition ability, and excellent biocompatibility.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142159001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spontaneous Macrophase Separation Strategy for Bridging Hydrogels from Bilayer to Double-Network Structure 将水凝胶从双层结构桥接为双网络结构的自发大相分离策略
Accounts of materials research Pub Date : 2024-09-04 DOI: 10.1021/accountsmr.4c00209
Dong Zhang, Qiang Chen, Hong Chen, Yijing Tang, Jie Zheng
{"title":"Spontaneous Macrophase Separation Strategy for Bridging Hydrogels from Bilayer to Double-Network Structure","authors":"Dong Zhang, Qiang Chen, Hong Chen, Yijing Tang, Jie Zheng","doi":"10.1021/accountsmr.4c00209","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00209","url":null,"abstract":"Bilayer hydrogels and double-network (DN) hydrogels represent two distinct classes of soft-wet materials, each characterized by their distinctive network structures, design principles, synthesis methods, and core functions targeted for their specific applications. Bilayer hydrogels are structured in two different layers, each with their anisotropic structure and unique properties. This dual-layer configuration facilitates targeted responses or controlled actuation in response to environmental stimuli, making them ideal for applications requiring responsive material behavior. On the other hand, DN hydrogels consist of two interwoven yet independent networks: one brittle and the other elastic. This dual-network structure, featuring contrasting network properties, allows for substantial energy dissipation and mechanical enhancement, often far exceeding that of traditional single-network hydrogels. Despite the individual strengths and specialized applications of each hydrogel type, a unified fabrication strategy that addresses both types of hydrogels has been conspicuously missing due to their inherent structural differences. This gap in the hydrogel field presents significant challenges but also opens opportunities for innovation in material design and application.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver Sulfide Nanocrystals and Their Photodetector Applications 硫化银纳米晶体及其光电探测器应用
Accounts of materials research Pub Date : 2024-08-30 DOI: 10.1021/accountsmr.4c00109
Jisu Kwon, Yoonbin Shin, Yunmo Sung, Hyunmi Doh, Sungjee Kim
{"title":"Silver Sulfide Nanocrystals and Their Photodetector Applications","authors":"Jisu Kwon, Yoonbin Shin, Yunmo Sung, Hyunmi Doh, Sungjee Kim","doi":"10.1021/accountsmr.4c00109","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00109","url":null,"abstract":"Silver sulfide nanocrystals (Ag&lt;sub&gt;2&lt;/sub&gt;S NCs) exhibit unique infrared (IR) absorption and emission capabilities, drawing great interest for their broad applicability. These NCs are considered environmentally friendly alternatives to heavy metals such as lead (Pb), mercury (Hg), and cadmium (Cd) chalcogenides. This Account provides a comprehensive overview based on our research on Ag&lt;sub&gt;2&lt;/sub&gt;S NCs. We investigated their synthesis over size and shape, surface stoichiometry control, postsynthetic surface composition change, and optoelectronic application. The work began with developing a synthesis protocol for the Ag&lt;sub&gt;2&lt;/sub&gt;S NCs. Size-tunable and nearly monodisperse NCs were obtained through the precise control of precursor ratio. The ability to manipulate the size of the NCs enabled us to explore and adjust their optical properties. Another important aspect of the research focused on the mechanism of shape transformation. The evolution of the NCs from their initial spherical structure to more complex shapes such as rods and cubes was observed. Through rigorous investigations using a transmission electron microscope (TEM), we studied the relationship between the morphological changes and crystal facets. Investigations were also extended to surface chemistry, where methods were developed to tune the surface stoichiometry of Ag&lt;sub&gt;2&lt;/sub&gt;S NCs. Perfectly stoichiometric-surfaced Ag&lt;sub&gt;2&lt;/sub&gt;S NCs synthesized through ion-pair ligand-assisted surface reactions exhibited significantly increased photoluminescence (PL) and an enhanced epitaxial ZnS growth rate. Finally, we explored the cation exchange reactions of Ag&lt;sub&gt;2&lt;/sub&gt;S NCs. The cation exchange reaction with indium (In) ions yielded AgInS&lt;sub&gt;2&lt;/sub&gt; NCs with size-dependent crystal structures: tetragonal for small NCs and orthorhombic for large NCs. A critical size at around 4.3 nm was observed, representing a trade-off between a thermodynamically more stable tetragonal structure and an orthorhombic structure that preserves the anionic framework. Throughout this Account, we address the challenges for the application of Ag&lt;sub&gt;2&lt;/sub&gt;S NCs and propose future directions including advancements in synthesis techniques, surface chemistry, and their applications. Ag&lt;sub&gt;2&lt;/sub&gt;S NCs typically show limitations such as low chemical and electrical stability, which may originate from the low lattice energy and high concentration of cation vacancies. However, such unique features can be advantageous for some applications, for example, acceptor materials in photomultiplication (PM)-type photodiodes. PM-type photodiodes were developed by combining polymeric semiconductors and Ag&lt;sub&gt;2&lt;/sub&gt;S NCs. These photodiodes can amplify signals by trapping electrons within Ag&lt;sub&gt;2&lt;/sub&gt;S NCs. These NCs efficiently trap multiple charge carriers from donor materials, in which their typical disadvantage is reinterpreted as a beneficial attribute for advanced device applications. In order to enhance the elect","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Top-Down Fabrication of Chemical and Biological Sensors 自上而下制造化学和生物传感器
Accounts of materials research Pub Date : 2024-08-28 DOI: 10.1021/accountsmr.4c00170
Hohyung Kang, Ahyeon Cho, Seongcheol Park, Soo-Yeon Cho, Hee-Tae Jung
{"title":"Top-Down Fabrication of Chemical and Biological Sensors","authors":"Hohyung Kang, Ahyeon Cho, Seongcheol Park, Soo-Yeon Cho, Hee-Tae Jung","doi":"10.1021/accountsmr.4c00170","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00170","url":null,"abstract":"Fabrication of complex three-dimensional (3D) structures with micro/nanoscale dimensions is crucial for high-performing chemical and biological sensor applications. It not only enables the accurate detection and tracking of minuscule chemical and biological analytes but also determines the commercial viability and practical utilization of the sensors in future intricate applications. Among various structure fabrication approaches, top-down lithography provides invaluable tools for fabricating complex 3D micro/nanoscale structures in sensors, enabling the sensitive and selective detection of low concentration chemical and biological analytes. Moreover, it preserves the inherent advantages of top-down lithography as the sensor attributes, including (i) high-resolution and tight pitch 3D structures in long-range order, (ii) varied pattern shapes, dimensions, and densities, (iii) low device-to-device variation, (iv) high integrated circuit yield, (v) acceptable process cost and processability, and (vi) the ability to accommodate a wide range of materials. Given the variety of top-down lithographic methods available for fabricating sensors and the complex requirements of the sensor such as diverse target analytes, varying concentration levels, and different sensing environments, it is essential to have a comprehensive understanding of the technical nuances associated with each top-down lithography technique and its applications. However, there is a significant gap in the literature regarding targeted evaluations of top-down lithography methods for high-performance chemical and biological sensor fabrication as well as a clear articulation of sensor design rules.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信