{"title":"Rational Design and Controlled Synthesis of MOF-Derived Single-Atom Catalysts","authors":"Weibin Chen, Bingbing Ma and Ruqiang Zou*, ","doi":"10.1021/accountsmr.4c0033010.1021/accountsmr.4c00330","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00330https://doi.org/10.1021/accountsmr.4c00330","url":null,"abstract":"<p >Single-atom catalysts (SACs) represent a transformative advancement in heterogeneous catalysis, offering unparalleled opportunities for maximizing atomic efficiency and enhancing performance. SACs are characterized by isolated metal atoms uniformly dispersed on suitable supports, ensuring each metal atom serves as an independent catalytic site. This dispersion mitigates metal atom aggregation, a common issue in conventional nanocatalysts, thus enabling superior activity, selectivity, and stability. Metal–organic frameworks (MOFs) have emerged as an ideal platform for SAC synthesis due to their structural diversity, tunable coordination environments, and high surface areas. MOFs provide well-defined coordination sites that facilitate the precise stabilization of single metal atoms, presenting significant advantages over traditional supports like metal oxides and metal materials. Carbonization of MOFs yields MOF-derived carbon materials that retain key structural characteristics while offering enhanced electrical conductivity and stability, making them suitable for various catalytic applications.</p><p >Recent advances in the rational design and controlled synthesis of MOF-derived SACs have significantly improved their performance in electrocatalytic processes such as the oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO<sub>2</sub>RR). However, challenges remain, including maintaining structural integrity during high-temperature carbonization, enhancing mass and electron transport and ensuring the stability of isolated metal atoms under reaction conditions. To address these challenges, strategies such as using structure-directing agents to stabilize MOF frameworks, forming high-energy porous carbon networks, and optimizing support morphologies have been developed to maximize active site exposure and accessibility. On the other hand, the interplay between active metal sites and their coordination environments is crucial in determining the catalytic activity and selectivity of SACs. Advanced computational modeling, coupled with experimental validation, has provided insights into the electronic structure of SACs and the interactions between metal atoms and supports. These insights have enabled researchers to fine-tune local atomic coordination, leading to significant enhancements in performance. For instance, modifying the coordination environment of metal atoms optimizes the binding strength of reaction intermediates, thereby improving both activity and selectivity. This account highlights our group’s contributions to MOF-derived SACs, focusing on innovative design, functionalization, and synthesis approaches that enhance catalytic activity. Notable strategies include using structure-directing agents to maintain pore connectivity during carbonization, preserving high surface areas, and enhancing mass transport. We also discuss the design of high-energy MOF-derived porous carbon networks that facilitate continuous electron","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 2","pages":"210–220 210–220"},"PeriodicalIF":14.0,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rational Design and Controlled Synthesis of MOF-Derived Single-Atom Catalysts","authors":"Weibin Chen, Bingbing Ma, Ruqiang Zou","doi":"10.1021/accountsmr.4c00330","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00330","url":null,"abstract":"Single-atom catalysts (SACs) represent a transformative advancement in heterogeneous catalysis, offering unparalleled opportunities for maximizing atomic efficiency and enhancing performance. SACs are characterized by isolated metal atoms uniformly dispersed on suitable supports, ensuring each metal atom serves as an independent catalytic site. This dispersion mitigates metal atom aggregation, a common issue in conventional nanocatalysts, thus enabling superior activity, selectivity, and stability. Metal–organic frameworks (MOFs) have emerged as an ideal platform for SAC synthesis due to their structural diversity, tunable coordination environments, and high surface areas. MOFs provide well-defined coordination sites that facilitate the precise stabilization of single metal atoms, presenting significant advantages over traditional supports like metal oxides and metal materials. Carbonization of MOFs yields MOF-derived carbon materials that retain key structural characteristics while offering enhanced electrical conductivity and stability, making them suitable for various catalytic applications.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"97 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojin Zhang, Haowen Cai, Tiantian Hu, Meihua Lin, Yu Dai* and Fan Xia,
{"title":"DNA-Functionalized Solid-State Nanochannels with Enhanced Sensing","authors":"Xiaojin Zhang, Haowen Cai, Tiantian Hu, Meihua Lin, Yu Dai* and Fan Xia, ","doi":"10.1021/accountsmr.4c0032310.1021/accountsmr.4c00323","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00323https://doi.org/10.1021/accountsmr.4c00323","url":null,"abstract":"<p >After billions of years of evolution, organisms in nature have almost completed the intelligent manipulation of all life processes. Biological nanopores embedded in the cell membrane of organisms are representatives with intelligent manipulation capabilities. Biological nanopores can achieve controllable transmembrane transport of various ions and molecules, playing an important role in molecular biology processes such as substance exchange, signal transmission, energy conversion, and system function regulation in cells. Scientists have utilized biological nanopores for sensing analysis, such as gene sequencing and single-molecule detection. However, due to the characteristic that proteins (components of biological nanopores) cannot exist stably for a long time, scientists have developed solid-state nanopores/nanochannels with high mechanical strength, strong plasticity, and easy surface modification.</p><p >The sensing technology based on solid-state nanopores/nanochannels has attracted widespread attention in research fields such as biology, chemistry, and physics due to its advantages of fast speed, high throughput, and label free. Specific target capture can be achieved by probe modification at the inner walls of solid-state nanopores/nanochannels. When the target binds to the probe, the spatial hindrance, charge distribution, and hydrophilicity/hydrophobicity inside the channel change, thereby affecting the ion current output signal. At present, the sensing technology based on solid-state nanopores/nanochannels has achieved in situ detection of targets with sizes ranging from 100 pm-100 nm. It is worth noting that due to the inability of targets larger than 1 μm, such as cells, to pass through the channel, inner wall functionalized nanopores/nanochannels cannot achieve direct in situ detection of cells.</p><p >In fact, the surfaces of nanopores/nanochannels that can be used for functionalization include an inner wall and outer surface. Our group has first conducted a series of experiments to distinguish the probes at the inner wall and outer surface of nanochannels and proved that the probes on the outer surface can also be helpful for detection. In recent years, our research has focused on the outer surface of solid-state nanochannels, which presents a highly controllable model to study the ability to independently regulate ion transport. In addition, our work is followed by many groups in a short period. Here, we mainly summarize the DNA functionalization that distinguishes the inner wall and outer surface of nanochannels to enhance the sensitivity, specificity, and accuracy of nanochannel sensing. The challenges and future development opportunities faced by nanochannels in the field of sensing are explored. We believe that the content of this Account has certain guiding significance for the DNA functionalization of nanochannels and their applications in sensing.</p>","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 3","pages":"285–293 285–293"},"PeriodicalIF":14.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143713890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DNA-Functionalized Solid-State Nanochannels with Enhanced Sensing","authors":"Xiaojin Zhang, Haowen Cai, Tiantian Hu, Meihua Lin, Yu Dai, Fan Xia","doi":"10.1021/accountsmr.4c00323","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00323","url":null,"abstract":"After billions of years of evolution, organisms in nature have almost completed the intelligent manipulation of all life processes. Biological nanopores embedded in the cell membrane of organisms are representatives with intelligent manipulation capabilities. Biological nanopores can achieve controllable transmembrane transport of various ions and molecules, playing an important role in molecular biology processes such as substance exchange, signal transmission, energy conversion, and system function regulation in cells. Scientists have utilized biological nanopores for sensing analysis, such as gene sequencing and single-molecule detection. However, due to the characteristic that proteins (components of biological nanopores) cannot exist stably for a long time, scientists have developed solid-state nanopores/nanochannels with high mechanical strength, strong plasticity, and easy surface modification.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yihan Zhang, Yujian Liu, Wei Jiang* and Zhaohui Wang*,
{"title":"Chiral Molecular Carbon Imides: Shining Light on Chiral Optoelectronics","authors":"Yihan Zhang, Yujian Liu, Wei Jiang* and Zhaohui Wang*, ","doi":"10.1021/accountsmr.4c0030410.1021/accountsmr.4c00304","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00304https://doi.org/10.1021/accountsmr.4c00304","url":null,"abstract":"<p >Chiral molecular carbon imides (CMCIs) represent a kind of chiral π-conjugated molecules that are typically designed and synthesized by introducing helical chirality. This approach creates a stereogenic axis, rather than a traditional chiral center or chiral axis with saturated bonds, resulting in chiral conjugated helices (CCHs). CMCIs have garnered significant attention due to their flexible synthesis (annulative π-extension strategies), tailor-made structures (chiral polycyclic π-conjugated frameworks), and diverse properties (optical, electronic, magnetic, and biochemical characteristics related to chirality). Furthermore, CMCI systems exhibit unique chiroptical properties, including circular dichroism (CD) and circularly polarized luminescence (CPL), which have elevated them as emerging stars among chiral organic functional molecules. Benefiting from their large conjugation planes and excellent electron-withdrawing ability, CMCIs often display outstanding electron mobility, high electron affinity, and strong light absorption or emission capabilities, making them valuable in various organic semiconductor applications. Their unique chiroptical properties and excellent semiconducting abilities position CMCIs as key players in the emerging field of chiral optoelectronics. Additionally, the appropriate packing modes and efficient charge transfer in solid-state CCHs provide excellent platforms for applications in chiral-induced spin selectivity (CISS) and topological quantum properties.</p><p >In this Account, we present a comprehensive overview of three representative types of CMCIs: single-strand CCHs (<i>ss</i>-CCHs), double-strand CCHs (<i>ds</i>-CCHs), and multiple-strand CCHs (<i>ms</i>-CCHs). We focus on their rational design strategies, fundamental chiroptical properties, and chiral optoelectronic applications, particularly in circularly polarized organic photodetectors (CP-OPDs). We also discuss key parameters for evaluating chiroptical performance, such as the luminescence dissymmetry factor (<i>g</i><sub>lum</sub>) and photoluminescence quantum yield (Φ<sub>PL</sub>), and explore how the magnetic transition dipole moment (<b><i>m</i></b>), together with the electric transition dipole moment (<b>μ</b>), influence <i>g</i><sub>lum</sub> and Φ<sub>PL</sub>. Through this review, we highlight successful strategies to enhance chiroptical responses, such as improvements in molecular symmetry, heteroannulation, and the introduction of multiple chiral centers. We also delve into the intrinsic correlation between chiral structure and excited-state parameters, supported by theoretical calculations. By emphasizing the judicious structure evolution of high-efficiency circularly polarized photoluminescence (CPPL) in solutions based on these CCHs, we offer perspectives on the future development of circularly polarized electroluminescence (CPEL) emitters and their potential applications in circularly polarized organic light-emitting diodes (CP-OLED","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 2","pages":"158–171 158–171"},"PeriodicalIF":14.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiazhe Xu, Pengju Shi, Jingjing Xue and Rui Wang*,
{"title":"The Role of Organic Amidiniums in Perovskite Photovoltaics","authors":"Jiazhe Xu, Pengju Shi, Jingjing Xue and Rui Wang*, ","doi":"10.1021/accountsmr.4c0028810.1021/accountsmr.4c00288","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00288https://doi.org/10.1021/accountsmr.4c00288","url":null,"abstract":"<p >Clean energy forms the foundation of sustainable development, and among various technologies, photovoltaics─directly converting sunlight into electricity─stand out as one of the most promising and impactful. In recent years, it has garnered significant attention and undergone rapid development. Notably, Organic–inorganic Lead Halide Perovskites (OLHPs) have emerged as a breakthrough in this field. After just a decade of research and development, OLHP-based solar cells have achieved power conversion efficiencies (PCEs) exceeding 26%. OLHPs offer a unique combination of solution-based processing, low-cost production, and high efficiency, making them strong competitors to traditional inorganic semiconductor technologies such as silicon-based photovoltaics.</p><p >OLHPs are described by the chemical formula ABX<sub>3</sub>, where “A″ is a monovalent cation, “B″ is the divalent lead cation (Pb<sup>2+</sup> or Sn<sup>2+</sup>), and “X″ is a halide anion. In the early stages of OLHP development, the choice of the A cation was largely limited to methylammonium (MA<sup>+</sup>), formamidinium (FA<sup>+</sup>), and cesium (Cs<sup>+</sup>), as these cations were small enough to fit into the crystal lattice of the perovskite structure based on size and structural requirements. Moreover, progress in recent years discovered that incorporating oversized A cations as additives or passivators could significantly fine-tune the perovskite properties, leading to major advancements in performance. As the focus of OLHP research gradually shifted from methylaminium lead triiodide (MAPbI<sub>3</sub>) to formamidinium lead triiodide (FAPbI<sub>3</sub>), with a more suitable band gap and longer carrier lifetime, recent studies have highlighted the critical influence of the oversized amidiniums. Compared to traditional oversized ammoniums, oversized amidiniums demonstrating a more pronounced effect on optoelectronic properties.</p><p >In this Account, we explore key advancements brought about by the expanded role of amidiniums in OLHP research. These include: (i) the nucleation thermodynamic and kinetic regulation toward desirable OLHP phases; (ii) the modulation of bulk-phase electronic states through strain-induced effects; and (iii) the tuning of surface electronic states via low-dimensional phases and multifunctional groups. These areas are now at the cutting edge of OLHP research, playing a pivotal role in determining the utility, function, performance, and long-term stability of OLHP-based optoelectronic devices. In the future, further development of amidinium compounds will be essential, and the discovery of new amidiniums or novel applications is highly anticipated. As perovskite solar cells move toward commercialization, amidiniums are expected to play a crucial role in the fabrication of large-area, uniform, and high-quality perovskite films with consistent passivation to mitigate transverse carrier recombination. Additionally, amidiniums will be key in addre","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 2","pages":"147–157 147–157"},"PeriodicalIF":14.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Organic Amidiniums in Perovskite Photovoltaics","authors":"Jiazhe Xu, Pengju Shi, Jingjing Xue, Rui Wang","doi":"10.1021/accountsmr.4c00288","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00288","url":null,"abstract":"Clean energy forms the foundation of sustainable development, and among various technologies, photovoltaics─directly converting sunlight into electricity─stand out as one of the most promising and impactful. In recent years, it has garnered significant attention and undergone rapid development. Notably, Organic–inorganic Lead Halide Perovskites (OLHPs) have emerged as a breakthrough in this field. After just a decade of research and development, OLHP-based solar cells have achieved power conversion efficiencies (PCEs) exceeding 26%. OLHPs offer a unique combination of solution-based processing, low-cost production, and high efficiency, making them strong competitors to traditional inorganic semiconductor technologies such as silicon-based photovoltaics.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"163 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chiral Molecular Carbon Imides: Shining Light on Chiral Optoelectronics","authors":"Yihan Zhang, Yujian Liu, Wei Jiang, Zhaohui Wang","doi":"10.1021/accountsmr.4c00304","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00304","url":null,"abstract":"Chiral molecular carbon imides (CMCIs) represent a kind of chiral π-conjugated molecules that are typically designed and synthesized by introducing helical chirality. This approach creates a stereogenic axis, rather than a traditional chiral center or chiral axis with saturated bonds, resulting in chiral conjugated helices (CCHs). CMCIs have garnered significant attention due to their flexible synthesis (annulative π-extension strategies), tailor-made structures (chiral polycyclic π-conjugated frameworks), and diverse properties (optical, electronic, magnetic, and biochemical characteristics related to chirality). Furthermore, CMCI systems exhibit unique chiroptical properties, including circular dichroism (CD) and circularly polarized luminescence (CPL), which have elevated them as emerging stars among chiral organic functional molecules. Benefiting from their large conjugation planes and excellent electron-withdrawing ability, CMCIs often display outstanding electron mobility, high electron affinity, and strong light absorption or emission capabilities, making them valuable in various organic semiconductor applications. Their unique chiroptical properties and excellent semiconducting abilities position CMCIs as key players in the emerging field of chiral optoelectronics. Additionally, the appropriate packing modes and efficient charge transfer in solid-state CCHs provide excellent platforms for applications in chiral-induced spin selectivity (CISS) and topological quantum properties.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"348 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking Spin to Boost Thermopower","authors":"Zhongbin Wang, Jiaqing He","doi":"10.1021/accountsmr.4c00310","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00310","url":null,"abstract":"Figure 1. Illustrations of the mechanisms of spin-enhanced charge-based thermopower. (a) Spin entropy: a spin entropy flux is created by differences in spin–orbital degeneracies (<i>g</i>), flowing from high-degeneracy to low-degeneracy states, typically in transition metals (M), contributing to the total thermopower. Additionally, spin entropy arises from disordered spin orientations caused by the breakdown of long-range order at high temperatures, referred to as spin thermodynamic entropy. (b) Spin fluctuation: thermal fluctuations of the local spin density of itinerant electrons are most significant near <i>T</i><sub>C</sub>. These fluctuations are suppressed as the net magnetic moment stabilizes under a strong magnetic field. Reproduced with permission from ref (3). Copyright 2019 The Authors. (c) Magnon drag: magnons propagate in a magnetic material from the hot to the cold end, coupling with both electrons and phonons, contributing to thermopower through momentum transfer. Reproduced with permission from ref (4). Copyright 2021 The Authors. Figure 2. (a) Schematic illustration of spin entropy contributed by the localized electrons on Co ions transfer entropy via hopping transport due to the different degeneracy. Reproduced with permission from ref (6). Copyright 2020 The Authors. (b) The relative change in thermopower of Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+δ</sub> single crystal versus magnetic field for two directions (<i>B</i> along <i>c</i> axis and <i>ab</i> plane). Reproduced with permission from ref (8), Copyright 2013 John Wiley and Sons. (c) Calculated thermopower for different spin states as a function of cobalt valence in the CoO<sub>2</sub> layers. Reproduced with permission from ref (9), Copyright 2012 American Physical Society. (d) Schematic representation of spin orientation and thermodynamic entropy. Reproduced with permission from ref (10). Copyright 2021 The Authors. Figure 3. (a) Temperature dependent on thermopower with and without magnetic field in Fe<sub>2</sub>V<sub>0.9</sub>Cr<sub>0.1</sub>Al<sub>0.9</sub>Si<sub>0.1</sub>. Reproduced with permission from ref (3). Copyright 2019 The Authors.. The inset displays the spin fluctuation contribution peaks at <i>T</i><sub>C</sub>. (b) −<i>S</i>/<i>T</i> of Fe<sub>2</sub>V<sub>0.9</sub>Cr<sub>0.1</sub>Al<sub>0.9</sub>Si<sub>0.1</sub>, plotted as functions of magnetic field and temperature. −<i>S</i>/<i>T</i> has a sharp peak at <i>T</i><sub>C</sub> under zero magnetic field and is significantly suppressed with increasing <i>H</i>. Reproduced with permission from ref (3). Copyright 2019 The Authors. (c) Measured thermopower <i>S</i><sub>total</sub> and magnon drag induced thermopower <i>S</i><sub>M</sub> for Co<sub>2</sub>TiAl. The area between the <i>S</i><sub>total</sub> and <i>S</i><sub>M</sub> lines represents the sum of <i>S</i><sub>sf</sub> and <i>S</i><sub>d</sub>. The inset displays the temperature-dependent thermopower of <i>S</i><sub>sf</sub> + <i>S</i><sub>d</sub> a","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking Spin to Boost Thermopower","authors":"Zhongbin Wang, and , Jiaqing He*, ","doi":"10.1021/accountsmr.4c0031010.1021/accountsmr.4c00310","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00310https://doi.org/10.1021/accountsmr.4c00310","url":null,"abstract":"","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 2","pages":"129–135 129–135"},"PeriodicalIF":14.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}