Bing An, Yujie Ma, Xue Han, Martin Schröder, Sihai Yang
{"title":"Activation and Catalysis of Methane over Metal–Organic Framework Materials","authors":"Bing An, Yujie Ma, Xue Han, Martin Schröder, Sihai Yang","doi":"10.1021/accountsmr.4c00279","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00279","url":null,"abstract":"Methane (CH<sub>4</sub>), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH<sub>4</sub> has a low energy density of only 36 kJ L<sup>–1</sup> under ambient conditions, which is significantly lower than that of gasoline (<i>ca</i>. 34 MJ L<sup>–1</sup>). The activation and catalytic conversion of CH<sub>4</sub> into value-added chemicals [<i>e.g</i>., methanol (CH<sub>3</sub>OH), which has an energy density of <i>ca</i>. 17 MJ L<sup>–1</sup>], can effectively lift its energy density. However, this conversion is highly challenging due to the inert nature of CH<sub>4</sub>, characterized by its strong C–H bonds and high stability. Consequently, the development of efficient materials that can optimize the binding and activation pathway of CH<sub>4</sub> with control of product selectivity has attracted considerable recent interest. Metal–organic framework (MOF) materials have emerged as particularly attractive candidates for the development of efficient sorbents and heterogeneous catalysts due to their high porosity, low density, high surface area and structural versatility. These properties enable MOFs to act as effective platforms for the adsorption, binding and catalytic conversion of CH<sub>4</sub> into valuable chemicals. Recent reports have highlighted MOFs as promising materials for these applications, leading to new insights into the structure–activity relationships that govern their performance in various systems.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"146 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-Driven Combinatorial Design of Highly Energetic Materials","authors":"Linyuan Wen, Yinglei Wang, Yingzhe Liu","doi":"10.1021/accountsmr.4c00230","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00230","url":null,"abstract":"In this Account, we present a comprehensive overview of recent advancements in applying data-driven combinatorial design for developing novel high-energy-density materials. Initially, we outline the progress in energetic materials (EMs) development within the framework of the four scientific paradigms, with particular emphasis on the opportunities afforded by the evolution of computer and data science, which has propelled the theoretical design of EMs into a new era of data-driven development. We then discuss the structural features of typical EMs such as TNT, RDX, HMX, and CL-20, namely, a “scaffolds + functional groups” characteristic, underscoring the efficacy of the combinatorial design approach in constructing novel EMs. It has been discerned that those modifications to the scaffolds are the primary driving force behind the enhancement of EMs’ properties.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"UCl3-Type Solid Electrolytes: Fast Ionic Conduction and Enhanced Electrode Compatibility","authors":"Yi-Chen Yin, Jin-Da Luo, Hong-Bin Yao","doi":"10.1021/accountsmr.4c00073","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00073","url":null,"abstract":"Figure 1. Origin of the superionic conduction of UCl<sub>3</sub>-type SEs with the non-close-packed framework. (a) Li<sup>+</sup> probability density, represented by green isosurfaces from AIMD simulations in the vacancy-contained LaCl<sub>3</sub> lattice. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (b) Schematic of diffusion channel. Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. (c) Diffusion channel size distribution of Li<sub>3</sub>YCl<sub>6</sub>, Li<sub>3</sub>InCl<sub>6</sub>, LiNbOCl<sub>4</sub>, and UCl<sub>3</sub>-type Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> (LTLC). Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. (d) Schematic illustration of the effects of inherent distortion on energy landscape. Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. Figure 2. Ionic conductivity values at room temperature of crystalline chloride SEs, including conventional close-packed Li<sub><i>x</i></sub>M<sub><i>y</i></sub>Cl<sub><i>n</i></sub> SEs and UCl<sub>3</sub>-type LaCl<sub>3</sub>-based SEs. (1−4,10−14,21) Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. Figure 3. UCl<sub>3</sub>-type SEs with a more stable interface toward lithium metal anode. (a) Depth-dependent La 3d<sub>5/2</sub> X-ray photoelectron spectroscopy (XPS) spectra of the interface of Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> SE after 50 h of cycling. Reproduced with permission from reference (21). Copyright 2023 by Springer Nature Limited. (b) Depth-dependent La 3d<sub>5/2</sub> XPS spectra of the interface of Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> SE after 50 h of cycling. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (c) Voltage profile of a Li/Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub>/Li symmetric cell cycled under a current density of 0.2 mA cm<sup>–2</sup> and areal capacity of 1 mAh cm<sup>–2</sup> at 30 °C. Insets: corresponding magnified voltage profiles indicate steady Li plating/stripping voltages. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (d) La 3d<sub>5/2</sub> (left) and Zr 3d (right) XPS spectra of the Li|Li<sub>0.8</sub>Zr<sub>0.25</sub>La<sub>0.5</sub>Cl<sub>2.7</sub>O<sub>0.3</sub> interface after 500 h cycling, respectively. Reproduced with permission from reference (23). Copyright 2024 Royal Society of Chemistry. (e) Comparison of the critical current density (CCD) of Li metal symmetric cells with different solid electrolytes (Ga-LLZO (Li<sub>6.4</sub>Ga<sub>0.2</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>); ","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methodologies to Improve the Stability of High-Efficiency Perovskite Solar Cells","authors":"Sanjay Sandhu, Nam-Gyu Park","doi":"10.1021/accountsmr.4c00237","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00237","url":null,"abstract":"Organic–inorganic lead halide perovskite solar cells (PSCs) have attracted significant interest from the photovoltaic (PV) community due to suitable optoelectronic properties, low manufacturing cost, and tremendous PV performance with a certified power conversion efficiency (PCE) of up to 26.5%. However, long-term operational stability should be guaranteed for future commercialization. Over the past decade, intensive research has focused on improving the PV performance and device stability through the development of novel charge transport materials, additive engineering, compositional engineering, interfacial modifications, and the synthesis of perovskite single crystals. In this Account, we provide a comprehensive overview of recent progress and research directions in the fabrication of highly efficient and stable PSCs, including key outcomes from our group. We begin by highlighting the critical challenges and their causes that are detrimental to the development of stable PSCs. We then discuss the fundamentals of halide perovskites including their optical and structural properties. This is followed by a description of the fabrication methods for perovskite crystals, films, and various device architectures. Next, we introduced target-oriented key strategies such as developing high-quality single crystals for redissolution as a perovskite precursor to fabricate phase-stable and reproducible PSCs, along with reduced material costs, employing multifunctional additives to get uniform, robust, and stable perovskite films, and interfacial engineering techniques for effective surface and buried interface defect passivation to improve charge transport and long-term stability. Finally, we conclude with a critical assessment and perspective on the future development of PSCs. This Account will provide valuable insights into the current state-of-the-art PSCs and promising strategies tailored to specific roles that can be combined to manipulate the perovskite structure for novel outcomes and further advancements.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Microenvironment Frontier for Electrochemical CO2 Conversion","authors":"Andrew B. Wong","doi":"10.1021/accountsmr.4c00294","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00294","url":null,"abstract":"low CO<sub>2</sub> solubility in aqueous conditions the delicate balance between the delivery of essential proton donors for CO<sub>2</sub>RR versus the strong tendency to convert donated protons to H<sub>2</sub> via the competing hydrogen evolution reaction (HER) the delicate balance between reaction pathways toward multiple CO<sub>2</sub>RR products dynamic changes in local pH, ion concentrations, hydrophobicity, and active sites in response to phenomena such as carbonate formation and restructuring of electrocatalysts Figure 1. Schematic overview of CO<sub>2</sub>RR microenvironment effects. (a) Microenvironment impact on CO<sub>2</sub>RR performance. (b) Microenvironment considerations: experimental conditions, electrocatalyst characteristics, and electrolyte characteristics. (c) Description of the activity and activity coefficient for CO<sub>2</sub>, CO, and H<sub>2</sub>O (or other proton donors). Activity is the lens through which to understand numerous phenomena within the CO<sub>2</sub>RR microenvironment Figure 2. Schematic overview for macroscale, microscale, and nanoscale effects on planar (a–c) and porous (d–f) electrodes. First, the activity coefficient and concentration terms offer a helpful parameter space to compare the effects of various interventions and adjustments to the microenvironment that had previously been difficult to compare based on objective measures (Figure 1b). Second, this approach highlights the importance of improving our understanding of the relative contributions of three-phase (gas–liquid–solid) and larger area two-phase (liquid–solid) interfaces on CO<sub>2</sub>RR, which has attracted recent attention. (12,13) Third, this understanding highlights the importance of developing new <i>in situ</i> and <i>in operando</i> analytical techniques to probe the local distributions of CO<sub>2</sub>, CO, and H<sub>2</sub>O under reaction conditions. Attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) has already shown promise for quantifying bound versus free water during CO<sub>2</sub>RR. (13) What are strategies to extend recent fundamental developments on controlling water activity to improve CO<sub>2</sub>RR performance at high current densities? How can we use the microenvironment to explore electrochemical strategies to simultaneously accomplish CO<sub>2</sub> capture and conversion? Based on the historical development of CO<sub>2</sub>RR approaches, can we or should we adopt new materials for CO<sub>2</sub>RR GDLs and ionomers (typically materials developed for other chemical transformations with different requirements) to specialize in CO<sub>2</sub>RR’s requirements? In CO<sub>2</sub>RR, what is the structure of the three-phase gas–liquid–solid and other interfaces under reaction conditions? Leveraging the microenvironment, how can CO<sub>2</sub> be used to make higher-value products or products that can integrate into the economy to achieve net negative CO<sub>2</sub> ","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extremely Downsized Materials: Ball-Milling-Enabled Universal Production and Size-Reduction-Induced Performance Enhancement","authors":"Ce Zhao, Liuyang Xiao, Zhexue Chen, Yong Zhang","doi":"10.1021/accountsmr.4c00306","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00306","url":null,"abstract":"Extremely downsized (including quantum-sized and subnanometer-sized) materials with sizes between atoms and nanoparticles have attracted tremendous attention thanks to their unique structures and exotic physical and chemical properties. Such unusual materials will induce a range of enhanced performances compared with their nanoscale and bulk counterparts, which can be beneficial to driving advancements of materials science as well as nanoscience and nanotechnology. However, it is quite challenging to prepare extremely downsized materials due to their ultrasmall sizes and ultralarge surfaces. Up to now, a variety of strategies have been explored for the preparation of extremely downsized materials, among which the basic categories are top-down and bottom-up methods. The former generally tailors bulk materials into downsized nanomaterials by physical routes, while the latter usually involves chemical (solution) processes to synthesize nanomaterials. During past decades, most efforts have been devoted to bottom-up methods for the synthesis of extremely downsized materials (e.g., colloidal quantum dots, sub-nanometer-sized materials, clusters, and supermolecules). Meanwhile, the production of extremely downsized materials through top-down methods is far from satisfactory, limited by their low manufacturing capacities and relatively expensive facilities. Note that nanomaterials produced by top-down physical methods exhibit entirely exposed surface/edge lattices, while the surface/edge lattices synthesized by bottom-up chemical methods are protected by ligands, making the surface/edge effects greatly obscured. Undoubtedly, exploiting a robust strategy to produce extremely downsized materials with maximized exposed lattices by all-physical top-down methods is required and desired. Our group has been focusing on all-physical production and extreme performances of extremely downsized materials since 2015. We have developed a universal and scalable strategy (i.e., the combination of silica-assisted ball-milling and sonication-assisted solvent exfoliation and treatment) for the all-physical production of quantum-sized materials. A series of quantum-sized materials with intrinsic characteristics have been produced, pushing forward the establishment of a complete database/library. Recently, two-stage silica-assisted ball-milling has been employed to realize the universal production of sub-nanometer-sized materials with entirely exposed and broken intrinsic lattices, suggesting that the top-down fabrication limit has reached the subnanometer (single-lattice) scale. Enhanced performances are demonstrated in both quantum-sized and sub-nanometer-sized materials because of their numerous broken lattices on surfaces/edges.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"135 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of Reaction System and Regulation of Catalyst Active Sites for Sustainable Ammonia Production","authors":"Zhe Meng, Miao-Miao Shi, Jun-Min Yan","doi":"10.1021/accountsmr.4c00103","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00103","url":null,"abstract":"Ammonia (NH<sub>3</sub>) is widely used for human life and considered a green energy carrier without CO<sub>2</sub> emissions; thus, green and sustainable NH<sub>3</sub> synthesis is of great importance. The traditional Haber-Bosch process requires harsh conditions with serious environmental implications. Therefore, numerous research is focused on the efficient synthesis of NH<sub>3</sub> from abundant N<sub>2</sub>/air and water under ambient conditions, utilizing renewable energy sources. Despite the fact that the electrocatalytic N<sub>2</sub> reduction reaction (eNRR) is an ideal method for NH<sub>3</sub> synthesis, the NH<sub>3</sub> yield and Faradaic efficiency (FE) are severally hampered by the inertness of N<sub>2</sub>, impeding its industrial application. Various strategies have been proposed to synthesize highly efficient heterogeneous catalysts for N<sub>2</sub> adsorption and dissociation to improve NH<sub>3</sub> yield and FE. Besides, benefiting from the nonthermal plasma N<sub>2</sub> oxidation reaction (pNOR) and electrocatalytic nitrate/nitrite reduction reaction (eNO<sub><i>x</i></sub>RR), the two-step approach overcomes the limitations of eNRR, attracting significant interest. This strategy facilitates N<sub>2</sub> splitting, which is a crucial step in the synthesis of NH<sub>3</sub>. Additionally, eNO<sub><i>x</i></sub>RR involves complex intermediates, making it essential to investigate catalysts with high selectivity of NH<sub>3</sub>. Overall, through the optimization of catalysts and reaction systems, NH<sub>3</sub> can be synthesized with high efficiency. The two-step strategy is the most realistic process for mass NH<sub>3</sub> production, but several challenges still need to be addressed, including improving the overall energy efficiency and scaling up the technology for industrial applications.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Negar Rajabi, Matthew Gene Scarfo, Cole Martin Fredericks, Ramón Santiago Herrera Restrepo, Azin Adibi, Hamed Shahsavan
{"title":"From Anisotropic Molecules and Particles to Small-Scale Actuators and Robots: An Account of Polymerized Liquid Crystals","authors":"Negar Rajabi, Matthew Gene Scarfo, Cole Martin Fredericks, Ramón Santiago Herrera Restrepo, Azin Adibi, Hamed Shahsavan","doi":"10.1021/accountsmr.4c00187","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00187","url":null,"abstract":"Untethered small-scale (milli-, micro-, and nano-) soft robots promise minimally invasive and targeted medical procedures in tiny, flooded, and confined environments like inside the human body. Despite such potentials, small-scale robots have not yet found their way to real-world applications. This can be mainly attributed to the fundamental and technical challenges in the fabrication, powering, navigation, imaging, and closed-loop control of robots at submillimiter scales. Pertinent to this Account, the selection of building block materials of small-scale robots also poses a challenge that is directly related to their fabrication and function.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boosting Oxidative Stress with Hydroxyethyl Starch Smart Nanomedicines to Eliminate Cancer Stem Cells","authors":"Zitao Fan, Xing Wang, Xiangliang Yang, Zifu Li","doi":"10.1021/accountsmr.4c00240","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00240","url":null,"abstract":"The significance of cancer stem cells (CSCs), a rare population of cells in tumor tissues, in biology and the treatment of solid malignancies has been widely appreciated for more than two decades. Due to a peculiar self-renewal capability, even one single cancer stem cell can grow into a bulk tumor mass. For this reason, CSCs have long been blamed as the major culprit of tumor initiation, tumor progression, treatment resistance, metastasis, and recurrence. Therefore, it has been postulated that targeting CSCs could provide tremendous clinical benefits for patients with solid tumors. Accumulating studies corroborated that CSCs maintained a tight regulation of redox homeostasis and that the fate of CSCs was extremely sensitive to elevated oxidative stress. Accordingly, a plethora of therapeutic drugs that can generate reactive oxygen species (ROS) have been leveraged to target CSCs. Nonetheless, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs thus far.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"211 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Living Biomaterials: Fabrication Strategies and Biomedical Applications","authors":"Qi-Wen Chen, Xian-Zheng Zhang","doi":"10.1021/accountsmr.4c00258","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00258","url":null,"abstract":"Natural or bioengineered living organisms (including mammalian cells, bacteria, microalgaes, yeast, viruses, plant cells, and the multiple organism community) possess many intrinsic or artificial superiorities than the synthesized and inert biomaterials for application in many fields, especially biomedical applications. By leveraging the inherent or artificial therapeutic competences (e.g., disease chemotaxis, drugs production, intelligent delivery, immune activation and metabolic regulation), these living organisms have been developed as critical therapeutic formulations for biomedical applications to solve unmet medical needs. These living organisms are more intelligent, more easily available, more highly active, and more strongly curative than conventional inert formulations, such as inorganic nanocarriers, metal–organic chelating networks, polymeric nanovesicles and biomembrane biohybrids, etc. Nevertheless, nonspecific <i>in vivo</i> circulation, the diseased microenvironment-triggered inactivation, uncontrolled proliferation or colonization, unexpected side effects, and unsatisfactory therapeutic effect severely restricted their further research development and clinical approval. Living biomaterials, fabricated by integrating tailored functional materials with natural or bioengineered living organisms by chemical conjugation, physical assembly, and biological engineering strategies as well as advanced construction techniques, are rapidly developed to preserve or augment bioactivity and therapeutic properties of living organisms and even control their behaviors, decrease their biotoxicity, and impart them with new biofunctionalities, like stress resistance, bioactivity maintenance, safe trafficking, controllable proliferation and colonization, and evolved metabolism properties. These acquired capacities are especially beneficial to improve therapeutic potency and compliance, solve significant therapeutic restrictions, avoid biosafety questions, enhance therapeutic performances, and extend the boundaries of the fabricated living biomaterials on science research and practical biomedical applications. Additionally, the introduction of biocompatible and instructive functional materials, such as inorganic materials, synthetic polymers and polypeptides, functional proteins and enzymes, as well as biological component materials, can also promote the interaction of living biomaterials with the living body and provide feedback to further adapt the biofunctions of living organisms.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}