Yu-hui Huang, Bonnie Lee, J. A. Chuy, Stephanie L Goldschmidt
{"title":"3D printing for surgical planning of canine oral and maxillofacial surgeries","authors":"Yu-hui Huang, Bonnie Lee, J. A. Chuy, Stephanie L Goldschmidt","doi":"10.1186/s41205-022-00142-y","DOIUrl":"https://doi.org/10.1186/s41205-022-00142-y","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47694671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D printed models in pregnancy and its utility in improving psychological constructs: a case series","authors":"J. J. Coté, Brayden Patric Coté, A. Badura-Brack","doi":"10.1186/s41205-022-00144-w","DOIUrl":"https://doi.org/10.1186/s41205-022-00144-w","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65780756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Kiesel, Inga Beyers, A. Kalisz, A. Wöckel, Sanja Löb, Tanja Schlaiß, Christine Wulff, J. Diessner
{"title":"Evaluating a novel 3D printed model for simulating Large Loop Excision of the Transformation Zone (LLETZ)","authors":"Matthias Kiesel, Inga Beyers, A. Kalisz, A. Wöckel, Sanja Löb, Tanja Schlaiß, Christine Wulff, J. Diessner","doi":"10.1186/s41205-022-00143-x","DOIUrl":"https://doi.org/10.1186/s41205-022-00143-x","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65781237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kirstie Snodderly, Magdalene Fogarasi, Yutika Badhe, Ankit R. Parikh, Daniel Porter, Albert Burchi, L. Gilmour, M. D. Di Prima
{"title":"Dimensional variability characterization of additively manufactured lattice coupons","authors":"Kirstie Snodderly, Magdalene Fogarasi, Yutika Badhe, Ankit R. Parikh, Daniel Porter, Albert Burchi, L. Gilmour, M. D. Di Prima","doi":"10.1186/s41205-022-00141-z","DOIUrl":"https://doi.org/10.1186/s41205-022-00141-z","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49251136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Kiesel, Inga Beyers, A. Kalisz, R. Joukhadar, A. Wöckel, S. Herbert, C. Curtaz, Christine Wulff
{"title":"A 3D printed model of the female pelvis for practical education of gynecological pelvic examination","authors":"Matthias Kiesel, Inga Beyers, A. Kalisz, R. Joukhadar, A. Wöckel, S. Herbert, C. Curtaz, Christine Wulff","doi":"10.1186/s41205-022-00139-7","DOIUrl":"https://doi.org/10.1186/s41205-022-00139-7","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44320062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reena M. Ghosh, M. Jolley, C. Mascio, Jonathan M. Chen, Stephanie Fuller, J. Rome, E. Silvestro, K. Whitehead
{"title":"Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality","authors":"Reena M. Ghosh, M. Jolley, C. Mascio, Jonathan M. Chen, Stephanie Fuller, J. Rome, E. Silvestro, K. Whitehead","doi":"10.1186/s41205-022-00137-9","DOIUrl":"https://doi.org/10.1186/s41205-022-00137-9","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43113463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Y. Zhang, Srujan Singh, Stephen Z. Liu, W. Zbijewski, W. Grayson
{"title":"A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds","authors":"Nicholas Y. Zhang, Srujan Singh, Stephen Z. Liu, W. Zbijewski, W. Grayson","doi":"10.1186/s41205-022-00135-x","DOIUrl":"https://doi.org/10.1186/s41205-022-00135-x","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42816550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jui Chih Cheng, A. Dubey, J. Beck, D. Sasaki, A. Leylek, S. Rathod
{"title":"Optical scan and 3D printing guided radiation therapy – an application and provincial experience in cutaneous nasal carcinoma","authors":"Jui Chih Cheng, A. Dubey, J. Beck, D. Sasaki, A. Leylek, S. Rathod","doi":"10.1186/s41205-022-00136-w","DOIUrl":"https://doi.org/10.1186/s41205-022-00136-w","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46562270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J Duke, Alexander L Clarke, Andrew L Stephens, Lee Djumas, Shaun D Gregory
{"title":"A computational fluid dynamics assessment of 3D printed ventilator splitters and restrictors for differential multi-patient ventilation.","authors":"Daniel J Duke, Alexander L Clarke, Andrew L Stephens, Lee Djumas, Shaun D Gregory","doi":"10.1186/s41205-021-00129-1","DOIUrl":"https://doi.org/10.1186/s41205-021-00129-1","url":null,"abstract":"<p><strong>Background: </strong>The global pandemic of novel coronavirus (SARS-CoV-2) has led to global shortages of ventilators and accessories. One solution to this problem is to split ventilators between multiple patients, which poses the difficulty of treating two patients with dissimilar ventilation needs. A proposed solution to this problem is the use of 3D-printed flow splitters and restrictors. There is little data available on the reliability of such devices and how the use of different 3D printing methods might affect their performance.</p><p><strong>Methods: </strong>We performed flow resistance measurements on 30 different 3D-printed restrictor designs produced using a range of fused deposition modelling and stereolithography printers and materials, from consumer grade printers using polylactic acid filament to professional printers using surgical resin. We compared their performance to novel computational fluid dynamics models driven by empirical ventilator flow rate data. This indicates the ideal performance of a part that matches the computer model.</p><p><strong>Results: </strong>The 3D-printed restrictors varied considerably between printers and materials to a sufficient degree that would make them unsafe for clinical use without individual testing. This occurs because the interior surface of the restrictor is rough and has a reduced nominal average diameter when compared to the computer model. However, we have also shown that with careful calibration it is possible to tune the end-inspiratory (tidal) volume by titrating the inspiratory time on the ventilator.</p><p><strong>Conclusions: </strong>Computer simulations of differential multi patient ventilation indicate that the use of 3D-printed flow splitters is viable. However, in situ testing indicates that using 3D printers to produce flow restricting orifices is not recommended, as the flow resistance can deviate significantly from expected values depending on the type of printer used.</p><p><strong>Trial registration: </strong>Not applicable.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"8 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10317875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelsey N. Sommer, M. Bhurwani, Vijayakumar Iyer, C. Ionita
{"title":"Comparison of fluid dynamics changes due to physical activity in 3D printed patient specific coronary phantoms with the Windkessel equivalent model of coronary flow","authors":"Kelsey N. Sommer, M. Bhurwani, Vijayakumar Iyer, C. Ionita","doi":"10.1186/s41205-022-00138-8","DOIUrl":"https://doi.org/10.1186/s41205-022-00138-8","url":null,"abstract":"","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45476409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}