{"title":"Customizable document control solution for 3D printing at the point-of-care.","authors":"Maxwell Lohss, Elliott Hammersley, Anish Ghodadra","doi":"10.1186/s41205-023-00172-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rapid expansion and anticipated U.S Food and Drug Administration regulation of 3D printing at the point-of-care necessitates the creation of robust quality management systems. A critical component of any quality management system is a document control system for the organization, tracking, signature collection, and distribution of manufacturing documentation. While off-the-shelf solutions for document control exist, external programs are costly and come with network security concerns. Here, we present our internally developed, cost-effective solution for an electronic document control system for 3D printing at the point-of-care.</p><p><strong>Methods: </strong>We created a hybrid document control system by linking two commercially available platforms, Microsoft SharePoint and Adobe Sign, using a customized document approval workflow.</p><p><strong>Results: </strong>Our platform meets all Code of Federal Regulations Title 21, Part 11 guidances.</p><p><strong>Conclusion: </strong>Our hybrid solution for document control provides an affordable system for users to sort, manage, store, edit, and sign documents. The system can serve as a framework for other 3D printing programs to prepare for future U.S Food and Drug Administration regulation, improve the efficiency of 3D printing at the point-of-care, and enhance the quality of work produced by their respective program.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"9 1","pages":"5"},"PeriodicalIF":3.2000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-023-00172-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The rapid expansion and anticipated U.S Food and Drug Administration regulation of 3D printing at the point-of-care necessitates the creation of robust quality management systems. A critical component of any quality management system is a document control system for the organization, tracking, signature collection, and distribution of manufacturing documentation. While off-the-shelf solutions for document control exist, external programs are costly and come with network security concerns. Here, we present our internally developed, cost-effective solution for an electronic document control system for 3D printing at the point-of-care.
Methods: We created a hybrid document control system by linking two commercially available platforms, Microsoft SharePoint and Adobe Sign, using a customized document approval workflow.
Results: Our platform meets all Code of Federal Regulations Title 21, Part 11 guidances.
Conclusion: Our hybrid solution for document control provides an affordable system for users to sort, manage, store, edit, and sign documents. The system can serve as a framework for other 3D printing programs to prepare for future U.S Food and Drug Administration regulation, improve the efficiency of 3D printing at the point-of-care, and enhance the quality of work produced by their respective program.