Neurochemical Research最新文献

筛选
英文 中文
Emerging Trends: Neurofilament Biomarkers in Precision Neurology 新趋势:精准神经学中的神经丝生物标记。
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-30 DOI: 10.1007/s11064-024-04244-3
Priti Sharma, Aditi Giri, Prabhash Nath Tripathi
{"title":"Emerging Trends: Neurofilament Biomarkers in Precision Neurology","authors":"Priti Sharma,&nbsp;Aditi Giri,&nbsp;Prabhash Nath Tripathi","doi":"10.1007/s11064-024-04244-3","DOIUrl":"10.1007/s11064-024-04244-3","url":null,"abstract":"<div><p>Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon’s length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer’s, Parkinson’s, Huntington’s, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3208 - 3225"},"PeriodicalIF":3.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium Butyrate Ameliorates Postoperative Delirium by Regulating Gut Microbiota Dysbiosis to Inhibit Astrocyte Activation in Aged Mice 丁酸钠通过调节肠道微生物群失衡抑制老年小鼠的星形胶质细胞活化来改善术后谵妄
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-28 DOI: 10.1007/s11064-024-04245-2
Fanning Xu, Hui Chen, Yubo Gao, Xiaoxia Yang, Chun Zhang, Xinli Ni
{"title":"Sodium Butyrate Ameliorates Postoperative Delirium by Regulating Gut Microbiota Dysbiosis to Inhibit Astrocyte Activation in Aged Mice","authors":"Fanning Xu,&nbsp;Hui Chen,&nbsp;Yubo Gao,&nbsp;Xiaoxia Yang,&nbsp;Chun Zhang,&nbsp;Xinli Ni","doi":"10.1007/s11064-024-04245-2","DOIUrl":"10.1007/s11064-024-04245-2","url":null,"abstract":"<div><p>Postoperative delirium (POD) is a common complication in elderly surgical patients, with limited targeted interventions due to incomplete understanding of its pathophysiological mechanisms. Central nervous system (CNS) inflammation, involving glial cell activation, particularly astrocytes, is considered crucial in POD development. Butyrate, a four-carbon fatty acid, has shown protective effects in CNS diseases, but its potential in mitigating POD remains unclear. This study aimed to investigate the impact of sodium butyrate on POD in aged mice. Behavioral tests, including open field, Y maze, and food burying tests, demonstrated that sodium butyrate preconditioning ameliorated laparotomy-induced delirium in aged mice. Pre-treatment with sodium butyrate inhibited astrocyte activation in the hippocampus, reduced interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) expression levels, and protected hippocampal neurons. Furthermore, the study revealed a connection between gut microbiota regulation and central neuroprotective effects mediated by astrocyte activation inhibition. Sodium butyrate improved the intestinal morphological barrier by rebalancing gut microbiota, inhibiting <i>Proteobacteria</i> and <i>Actinobacteria</i>, reducing <i>Allobaculum</i> and <i>Bacteroides</i> abundance, and increasing <i>Oscillospira</i> abundance. This regulation decreased gut permeability, limiting the entry of toxic substances into the bloodstream, thereby reducing inflammation spread and astrocyte overactivation, leading to central anti-inflammatory effects. In conclusion, sodium butyrate may ameliorate POD by inhibiting astrocyte-mediated neuroinflammation through gut microbiota rebalancing.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3342 - 3355"},"PeriodicalIF":3.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11064-024-04245-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Expression of Concern: The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy 社论表达关注:脑源性神经营养因子在癫痫中的可能作用。
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-27 DOI: 10.1007/s11064-024-04249-y
Raed AlRuwaili, Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Naif H. Ali, Athanasios Alexiou, Marios Papadakis, Hebatallah M. Saad, Gaber El-Saber Batiha
{"title":"Editorial Expression of Concern: The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy","authors":"Raed AlRuwaili,&nbsp;Hayder M. Al-kuraishy,&nbsp;Ali I. Al-Gareeb,&nbsp;Naif H. Ali,&nbsp;Athanasios Alexiou,&nbsp;Marios Papadakis,&nbsp;Hebatallah M. Saad,&nbsp;Gaber El-Saber Batiha","doi":"10.1007/s11064-024-04249-y","DOIUrl":"10.1007/s11064-024-04249-y","url":null,"abstract":"","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3396 - 3397"},"PeriodicalIF":3.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zona Incerta GABAergic Neurons Facilitate Emergence from Isoflurane Anesthesia in Mice 昏迷区 GABA 能神经元有助于小鼠从异氟醚麻醉中苏醒。
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-23 DOI: 10.1007/s11064-024-04230-9
Hong Chen, Chengxi Liu, Junxiao Liu, Chengdong Yuan, Haifeng He, Yu Zhang, Shouyang Yu, Tianyuan Luo, Wei Shen, Tian Yu
{"title":"Zona Incerta GABAergic Neurons Facilitate Emergence from Isoflurane Anesthesia in Mice","authors":"Hong Chen,&nbsp;Chengxi Liu,&nbsp;Junxiao Liu,&nbsp;Chengdong Yuan,&nbsp;Haifeng He,&nbsp;Yu Zhang,&nbsp;Shouyang Yu,&nbsp;Tianyuan Luo,&nbsp;Wei Shen,&nbsp;Tian Yu","doi":"10.1007/s11064-024-04230-9","DOIUrl":"10.1007/s11064-024-04230-9","url":null,"abstract":"<div><p>The zona incerta (ZI) predominantly consists of gamma-aminobutyric acid (GABAergic) neurons, located adjacent to the lateral hypothalamus. GABA, acting on GABAA receptors, serves as a crucial neuromodulator in the initiation and maintenance of general anesthesia. In this study, we aimed to investigate the involvement of ZI GABAergic neurons in the general anesthesia process. Utilizing in-vivo calcium signal optical fiber recording, we observed a decrease in the activity of ZI GABAergic neurons during isoflurane anesthesia, followed by a significant increase during the recovery phase. Subsequently, we selectively ablated ZI GABAergic neurons to explore their role in general anesthesia, revealing no impact on the induction of isoflurane anesthesia but a prolonged recovery time, accompanied by a reduction in delta-band power in mice under isoflurane anesthesia. Finally, through optogenetic activation/inhibition of ZI GABAergic neurons during isoflurane anesthesia, we discovered that activation of these neurons facilitated emergence without affecting the induction process, while inhibition delayed emergence, leading to fluctuations in delta band activity. In summary, these findings highlight the involvement of ZI GABAergic neurons in modulating the emergence of isoflurane anesthesia.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3297 - 3307"},"PeriodicalIF":3.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vivo Glucose Transporter-2 Regulation of Dorsomedial Versus Ventrolateral VMN Astrocyte Metabolic Sensor and Glycogen Metabolic Enzyme Gene Expression in Female Rat 体内葡萄糖转运体-2 对雌性大鼠背内侧血管网星形胶质细胞代谢传感器和糖原代谢酶基因表达的调控
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-21 DOI: 10.1007/s11064-024-04246-1
Sagor C. Roy, Subash Sapkota, Madhu Babu Pasula, Karen P. Briski
{"title":"In Vivo Glucose Transporter-2 Regulation of Dorsomedial Versus Ventrolateral VMN Astrocyte Metabolic Sensor and Glycogen Metabolic Enzyme Gene Expression in Female Rat","authors":"Sagor C. Roy,&nbsp;Subash Sapkota,&nbsp;Madhu Babu Pasula,&nbsp;Karen P. Briski","doi":"10.1007/s11064-024-04246-1","DOIUrl":"10.1007/s11064-024-04246-1","url":null,"abstract":"<div><p>Astrocyte glycogenolysis shapes ventromedial hypothalamic nucleus (VMN) regulation of glucostasis in vivo. Glucose transporter-2 (GLUT2), a plasma membrane glucose sensor, controls hypothalamic primary astrocyte culture glycogen metabolism in vitro. In vivo gene silencing tools and single-cell laser-catapult-microdissection/multiplex qPCR techniques were used here to examine whether GLUT2 governs dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN astrocyte metabolic sensor and glycogen metabolic enzyme gene profiles. GLUT2 gene knockdown diminished astrocyte GLUT2 mRNA in both VMN divisions. Hypoglycemia caused GLUT2 siRNA-reversible up-regulation of this gene profile in the VMNdm, but down-regulated VMNvl astrocyte GLUT2 transcription. GLUT2 augmented baseline VMNdm and VMNvl astrocyte glucokinase (GCK) gene expression, but increased (VMNdm) or reduced (VMNvl) GCK transcription during hypoglycemia. GLUT2 imposed opposite control, namely stimulation versus inhibition of VMNdm or VMNvl astrocyte 5’-AMP-activated protein kinase-alpha 1 and -alpha 2 gene expression, respectively. GLUT2 stimulated astrocyte glycogen synthase (GS) gene expression in each VMN division. GLUT2 inhibited transcription of the AMP-sensitive glycogen phosphorylase (GP) isoform GP-brain type (GPbb) in each site, yet diminished (VMNdm) or augmented (VMNvl) astrocyte GP-muscle type (GPmm) mRNA. GLUT2 enhanced VMNdm and VMNvl glycogen accumulation during euglycemia, and curbed hypoglycemia-associated VMNdm glycogen depletion. Results show that VMN astrocytes exhibit opposite, division-specific GLUT2 transcriptional responsiveness to hypoglycemia. Data document divergent GLUT2 control of GCK, AMPK catalytic subunit, and GPmm gene profiles in VMNdm versus VMNvl astrocytes. Ongoing studies seek to determine how differential GLUT2 regulation of glucose and energy sensor function and glycogenolysis in each VMN location may affect local neuron responses to hypoglycemia.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3367 - 3382"},"PeriodicalIF":3.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-fat and High-sucrose Diet-induced Hypothalamic Inflammation Shows Sex Specific Features in Mice 高脂肪和高蔗糖饮食诱导的小鼠下丘脑炎症具有性别特征
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-20 DOI: 10.1007/s11064-024-04243-4
Gabriela C. De Paula, Rui F. Simões, Alba M. Garcia-Serrano, João M. N. Duarte
{"title":"High-fat and High-sucrose Diet-induced Hypothalamic Inflammation Shows Sex Specific Features in Mice","authors":"Gabriela C. De Paula,&nbsp;Rui F. Simões,&nbsp;Alba M. Garcia-Serrano,&nbsp;João M. N. Duarte","doi":"10.1007/s11064-024-04243-4","DOIUrl":"10.1007/s11064-024-04243-4","url":null,"abstract":"<div><p>Hypothalamic inflammation underlies diet-induced obesity and diabetes in rodent models. While diet normalization largely allows for recovery from metabolic impairment, it remains unknown whether long-term hypothalamic inflammation induced by obesogenic diets is a reversible process. In this study, we aimed at determining sex specificity of hypothalamic neuroinflammation and gliosis in mice fed a fat- and sugar-rich diet, and their reversibility upon diet normalization. Mice were fed a 60%-fat diet complemented by a 20% sucrose drink (HFHSD) for 3 days or 24 weeks, followed by a third group that had their diet normalized for the last 8 weeks of the study (reverse diet group, RevD). We determined the expression of pro- and anti-inflammatory cytokines, and of the inflammatory cell markers IBA1, CD68, GFAP and EMR1 in the hypothalamus, and analyzed morphology of microglia (IBA-1<sup>+</sup> cells) and astrocytes (GFAP<sup>+</sup> cells) in the arcuate nucleus. After 3 days of HFHSD feeding, male mice showed over-expression of IL-13, IL-18, IFN-γ, CD68 and EMR1 and reduced expression of IL-10, while females showed increased IL-6 and IBA1 and reduced IL-13, compared to controls. After 24 weeks of HFHSD exposure, male mice showed a general depression in the expression of cytokines, with prominent reduction of TNF-α, IL-6 and IL-13, but increased TGF-β, while female mice showed over-expression of IFN-γ and IL-18. Furthermore, both female and male mice showed some degree of gliosis after HFHSD feeding for 24 weeks. In mice of both sexes, diet normalization after prolonged HFHSD feeding resulted in partial neuroinflammation recovery in the hypothalamus, but gliosis was only recovered in females. In sum, HFHSD-fed mice display sex-specific inflammatory processes in the hypothalamus that are not fully reversible after diet normalization.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3356 - 3366"},"PeriodicalIF":3.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferulic Acid-Loaded Nanostructure Maintains Brain Levels of ACh, Glutamate, and GABA and Ameliorates Anxiety and Memory Impairments Induced by the d-Galactose Aging Process in Rats 阿魏酸负载的纳米结构可维持大鼠大脑中 ACh、谷氨酸和 GABA 的水平,并改善 D-半乳糖老化过程引起的焦虑和记忆损伤。
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-20 DOI: 10.1007/s11064-024-04248-z
Domenika R. Rossato, Jéssica L. O. Rosa, Murilo B. Fontoura, Leana E. M. de Souza, Tielle M. de Almeida, Kathiane B. Kudrna, Scheila R. Schaffazick, Cristiane B. da Silva, Letícia Birk, Sarah Eller, Tiago F. de Oliveira, Marilise E. Burger
{"title":"Ferulic Acid-Loaded Nanostructure Maintains Brain Levels of ACh, Glutamate, and GABA and Ameliorates Anxiety and Memory Impairments Induced by the d-Galactose Aging Process in Rats","authors":"Domenika R. Rossato,&nbsp;Jéssica L. O. Rosa,&nbsp;Murilo B. Fontoura,&nbsp;Leana E. M. de Souza,&nbsp;Tielle M. de Almeida,&nbsp;Kathiane B. Kudrna,&nbsp;Scheila R. Schaffazick,&nbsp;Cristiane B. da Silva,&nbsp;Letícia Birk,&nbsp;Sarah Eller,&nbsp;Tiago F. de Oliveira,&nbsp;Marilise E. Burger","doi":"10.1007/s11064-024-04248-z","DOIUrl":"10.1007/s11064-024-04248-z","url":null,"abstract":"<div><p>Population aging is a global reality driven by increased life expectancy. This demographic phenomenon is intrinsically linked to the epidemic of cognitive disorders such as dementia and Alzheimer's disease, posing challenges for elderly and their families. In this context, the search for new therapeutic strategies to prevent or minimize cognitive impairments becomes urgent, as these deficits are primarily associated with oxidative damage and increased neuroinflammation. Ferulic acid (FA), a natural and potent antioxidant compound, is proposed to be nanoencapsulated to target the central nervous system effectively with lower doses and an extended duration of action. Here, we evaluated the effects of the nanoencapsulated FA on d-galactose (d-Gal)- induced memory impairments. Male <i>Wistar</i> adult rats were treated with ferulic acid-loaded nanocapsules (FA-Nc) or non-encapsulated ferulic acid (D-FA) for 8 weeks concurrently with d-Gal (150 mg/kg s.c.) injection. As expected, our findings showed that d-Gal injection impaired memory processes and increased anxiety behavior, whereas FA-Nc treatment ameliorated these behavioral impairments associated with the aging process induced by d-Gal. At the molecular level, nanoencapsulated ferulic acid (FA-Nc) ameliorated the decrease in ACh and glutamate induced by d-galactose (d-Gal), and also increased GABA levels in the dorsal hippocampus, indicating its therapeutic superiority. Additional studies are needed to elucidate the mechanisms underlying our current promising outcomes. Nanoscience applied to pharmacology can reduce drug dosage, thereby minimizing adverse effects while enhancing therapeutic response, particularly in neurodegenerative diseases associated with aging. Therefore, the strategy of brain-targeted drug delivery through nanoencapsulation can be effective in mitigating aging-related factors that may lead to cognitive deficits.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3383 - 3395"},"PeriodicalIF":3.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective Properties of Coriander-Derived Compounds on Neuronal Cell Damage under Oxidative Stress-Induced SH-SY5Y Neuroblastoma and in Silico ADMET Analysis 芫荽提取物对氧化应激诱导的 SH-SY5Y 神经母细胞瘤神经细胞损伤的神经保护特性及硅学 ADMET 分析
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-19 DOI: 10.1007/s11064-024-04239-0
Papitcha Jongwachirachai, Waralee Ruankham, Setthawut Apiraksattayakul, Saruta Intharakham, Veda Prachayasittikul, Wilasinee Suwanjang, Virapong Prachayasittikul, Supaluk Prachayasittikul, Kamonrat Phopin
{"title":"Neuroprotective Properties of Coriander-Derived Compounds on Neuronal Cell Damage under Oxidative Stress-Induced SH-SY5Y Neuroblastoma and in Silico ADMET Analysis","authors":"Papitcha Jongwachirachai,&nbsp;Waralee Ruankham,&nbsp;Setthawut Apiraksattayakul,&nbsp;Saruta Intharakham,&nbsp;Veda Prachayasittikul,&nbsp;Wilasinee Suwanjang,&nbsp;Virapong Prachayasittikul,&nbsp;Supaluk Prachayasittikul,&nbsp;Kamonrat Phopin","doi":"10.1007/s11064-024-04239-0","DOIUrl":"10.1007/s11064-024-04239-0","url":null,"abstract":"<div><p>An imbalance between reactive oxygen species (ROS) production and antioxidant defense driven by oxidative stress and inflammation is a critical factor in the progression of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Coriander (<i>Coriandrum sativum</i> L.), a culinary plant in the <i>Apiaceae</i> family, displays various biological activities, including anticancer, antimicrobial, and antioxidant effects. Herein, neuroprotective properties of three major bioactive compounds derived from coriander (i.e., linalool, linalyl acetate, and geranyl acetate) were investigated on hydrogen peroxide-induced SH-SY5Y neuroblastoma cell death by examining cell viability, ROS production, mitochondrial membrane potential, and apoptotic profiles. Moreover, underlying mechanisms of the compounds were determined by measuring intracellular sirtuin 1 (SIRT1) enzyme activity incorporated with molecular docking. The results showed that linalool, linalyl acetate, and geranyl acetate elicited their neuroprotection against oxidative stress <i>via</i> protecting cell death, reducing ROS production, preventing cell apoptosis, and modulating SIRT1 longevity. Additionally, in silico pharmacokinetic predictions indicated that these three compounds are drug-like agents with a high probability of absorption and distribution, as well as minimal potential toxicities. These findings highlighted the potential neuroprotective linalool, linalyl acetate, and geranyl acetate for developing alternative natural compound-based neurodegenerative therapeutics and prevention.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3308 - 3325"},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11064-024-04239-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases 中枢神经系统疾病中星形胶质细胞与神经元串联的研究进展
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-18 DOI: 10.1007/s11064-024-04241-6
Yi Zhang, Ziyu Wang, Fenglian Xu, Zijun Liu, Yu Zhao, Lele Zixin Yang, Weirong Fang
{"title":"Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases","authors":"Yi Zhang,&nbsp;Ziyu Wang,&nbsp;Fenglian Xu,&nbsp;Zijun Liu,&nbsp;Yu Zhao,&nbsp;Lele Zixin Yang,&nbsp;Weirong Fang","doi":"10.1007/s11064-024-04241-6","DOIUrl":"10.1007/s11064-024-04241-6","url":null,"abstract":"<div><p>Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer’s disease, Parkinson’s disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 12","pages":"3187 - 3207"},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11064-024-04241-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Nuclear Medicine Imaging Techniques in Glioblastomas 更正:胶质母细胞瘤的核医学成像技术。
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-09-18 DOI: 10.1007/s11064-024-04247-0
Emirhan Harbi, Michael Aschner
{"title":"Correction: Nuclear Medicine Imaging Techniques in Glioblastomas","authors":"Emirhan Harbi,&nbsp;Michael Aschner","doi":"10.1007/s11064-024-04247-0","DOIUrl":"10.1007/s11064-024-04247-0","url":null,"abstract":"","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 11","pages":"3014 - 3014"},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信