Neurochemical Research最新文献

筛选
英文 中文
Resveratrol Enhances the Efficacy of Combined BM-MSCs Therapy for Rat Spinal Cord Injury via Modulation of the Sirt-1/NF-κB Signaling Pathway 白藜芦醇通过调节 Sirt-1/NF-κB 信号通路增强 BM-MSCs 联合疗法对大鼠脊髓损伤的疗效
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-16 DOI: 10.1007/s11064-024-04264-z
Hao Chen, Haosen Zhao
{"title":"Resveratrol Enhances the Efficacy of Combined BM-MSCs Therapy for Rat Spinal Cord Injury via Modulation of the Sirt-1/NF-κB Signaling Pathway","authors":"Hao Chen,&nbsp;Haosen Zhao","doi":"10.1007/s11064-024-04264-z","DOIUrl":"10.1007/s11064-024-04264-z","url":null,"abstract":"<div><p>Spinal cord injury (SCI) represents a severe trauma to the central nervous system, resulting in significant disability and imposing heavy burdens on families and society. Pathophysiological changes following SCI often trigger secondary injuries that complicate treatment. Bone marrow mesenchymal stem cells (BM-MSCs) have become a focal point of research due to their multifunctionality and self-renewal capabilities; however, their survival and neuroprotective functions are compromised in inflammatory environments. Resveratrol, known for its anti-inflammatory, anti-aging, and anti-oxidative stress properties, has been extensively studied. This research focuses on the anti-inflammatory effects of resveratrol post-SCI and its combined application with BM-MSCs to treat rat spinal cord injuries, exploring both efficacy and mechanisms. In vivo experiments investigated changes in the Sirt-1 signaling pathway post-SCI, while in vitro studies examined the effects of resveratrol on BM-MSCs under inflammatory conditions. The assessment included recovery of motor function, neuronal survival, and apoptosis in SCI rats treated with resveratrol alone or in combination with BM-MSCs. Findings reveal a correlation between Sirt-1 and inflammation signaling pathways post-injury. Resveratrol significantly enhanced the survival and efficacy of BM-MSCs in inflammatory environments by upregulating Sirt-1 and downregulating NF-κB and other inflammatory markers, thereby reducing apoptosis. Combined treatment with resveratrol and BM-MSCs showed superior outcomes in motor function recovery and neuronal survival compared to treatment with BM-MSCs alone. This study offers a novel therapeutic strategy for SCI, enhancing stem cell survival and function through modulation of the Sirt-1/NF-κB pathway, providing a theoretical and experimental foundation for clinical applications.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal Monitoring of Glutathione Stability in Different Microenvironments 不同微环境中谷胱甘肽稳定性的纵向监测
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-15 DOI: 10.1007/s11064-024-04265-y
Yashika Arora, Avantika Samkaria, Joseph C. Maroon, Pravat K. Mandal
{"title":"Longitudinal Monitoring of Glutathione Stability in Different Microenvironments","authors":"Yashika Arora,&nbsp;Avantika Samkaria,&nbsp;Joseph C. Maroon,&nbsp;Pravat K. Mandal","doi":"10.1007/s11064-024-04265-y","DOIUrl":"10.1007/s11064-024-04265-y","url":null,"abstract":"<div><p>Glutathione (GSH) is a master antioxidant which primarily protects cells from oxidative stress. Clinical studies have found significant depletion of GSH from the hippocampus in patients with mild cognitive impairment (MCI), a transitional stage before conversion to Alzheimer’s disease (AD). Significant depletion of GSH is considered an early diagnostic biomarker of AD. Postmortem studies have confirmed significant GSH depletion in hippocampal tissue in MCI patients. The stability of GSH in different microenvironments is essential to validate GSH as a reliable biomarker for AD. Accordingly, we have conducted longitudinal monitoring of GSH from various brain regions (frontal cortex (FC), parietal cortex (PC), occipital cortex (OC), and cerebellum (CER)) from healthy subjects using MEshcher-GArwood Point RESolved Spectroscopy (MEGA-PRESS) pulse sequence on a 3T scanner. Additionally, in vitro magnetic resonance spectroscopy (MRS) assessments were conducted longitudinally using the same study protocol involving GSH supplement in a physiologically relevant phosphate buffer solution (PBS). We report that GSH within the brain microenvironment of a healthy person remains stable over time. GSH, however, is susceptible to oxidation over time in a phosphate buffer environment. The stability of GSH in a longitudinal study in the brains of healthy individuals supports the consideration of GSH as a candidate for stable biomarker for AD.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11064-024-04265-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of JM-20 on Age-Related Cognitive Impairment in Mice JM-20 对小鼠与年龄相关的认知障碍的影响
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-15 DOI: 10.1007/s11064-024-04254-1
Maylin Wong-Guerra, Yanay Montano-Peguero, Jeney Ramírez-Sánchez, Enrique García Alfonso, Daniela Hernández-Enseñat, Yeniceis Alcántara Isaac, Alejandro Saúl Padrón-Yaquis, João Batista Teixeira da Rocha, Luis Arturo Fonseca-Fonseca, Yanier Núñez-Figueredo
{"title":"Effect of JM-20 on Age-Related Cognitive Impairment in Mice","authors":"Maylin Wong-Guerra,&nbsp;Yanay Montano-Peguero,&nbsp;Jeney Ramírez-Sánchez,&nbsp;Enrique García Alfonso,&nbsp;Daniela Hernández-Enseñat,&nbsp;Yeniceis Alcántara Isaac,&nbsp;Alejandro Saúl Padrón-Yaquis,&nbsp;João Batista Teixeira da Rocha,&nbsp;Luis Arturo Fonseca-Fonseca,&nbsp;Yanier Núñez-Figueredo","doi":"10.1007/s11064-024-04254-1","DOIUrl":"10.1007/s11064-024-04254-1","url":null,"abstract":"<div><p>The decline in cognitive function associated with aging significantly impacts the well-being of elderly individuals and their families. This decline is a major recognized risk factor for neurodegenerative diseases, notably Alzheimer’s disease. Animal models of aging provide a platform for evaluating drugs concerning aspects like memory and oxidative stress. JM-20 has demonstrated protective effects on short-term memory acquisition and consolidation, along with antioxidant properties and modulation of Acetylcholinesterase activity. This study assesses the potential protective JM-20 against cognitive decline and age-related memory loss. For the study, aged mice exhibiting aging-associated damage were initially selected. Experimental groups were then formed, and the effect of 8 mg/kg of JM-20 was evaluated for 40 days on aging-related behavior, such as spatial memory, novelty recognition memory, ambulatory activity, and anxiety. Subsequently, animals were sacrificed, and the hippocampal region was extracted for redox studies and to assess acetylcholinesterase activity. Results indicated that JM-20 at 8 mg/kg reversed damage to spatial working and reference memory, exhibiting performance comparable to untreated young adult animals. Furthermore, JM-20 preserved the enzymatic activity of superoxide dismutase, catalase, and total sulfhydryl levels in age-related cognitive impairment in mice, indicating a potent protective effect against oxidative events at the brain level. However, only young, healthy animals showed decreased acetylcholinesterase enzyme activity. These findings provide preclinical pharmacological evidence supporting the neuroprotective activity of JM-20, positioning it as a promising therapeutic candidate for treating memory disorders associated with aging.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
20-Hydroxyeicosatetraenoic Acid Regulates the Src/EGFR/NF-κB Signaling Pathway Via GPR75 to Activate Microglia and Promote TBI in the Immature Brain 20-羟基二十碳四烯酸通过 GPR75 调节 Src/EGFR/NF-κB 信号通路,激活小胶质细胞并促进未成熟脑的创伤性脑损伤。
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-14 DOI: 10.1007/s11064-024-04260-3
Zhihui Ma, Yalei Ning, Xiaoli Chen, Shan Zhao, Jie Yan, Bo Wang, Changhong Li, Ruobing Gao, Xing Chen, Nan Yang, Yan Peng, Ping Li, Shiyu Shu
{"title":"20-Hydroxyeicosatetraenoic Acid Regulates the Src/EGFR/NF-κB Signaling Pathway Via GPR75 to Activate Microglia and Promote TBI in the Immature Brain","authors":"Zhihui Ma,&nbsp;Yalei Ning,&nbsp;Xiaoli Chen,&nbsp;Shan Zhao,&nbsp;Jie Yan,&nbsp;Bo Wang,&nbsp;Changhong Li,&nbsp;Ruobing Gao,&nbsp;Xing Chen,&nbsp;Nan Yang,&nbsp;Yan Peng,&nbsp;Ping Li,&nbsp;Shiyu Shu","doi":"10.1007/s11064-024-04260-3","DOIUrl":"10.1007/s11064-024-04260-3","url":null,"abstract":"<div><p>20-Hydroxyeicosatetraenoic acid (20-HETE) is associated with secondary damage in traumatic brain injury (TBI) of the immature brain. Microglial activation is pivotal in this process. However, the underlying mechanism of action remains unknown. While 20-HETE interacts with G protein-coupled receptor 75 (GPR75) in some pathological processes, their interaction in brain tissue remains uncertain. This study aimed to investigate whether 20-HETE can activate microglia by binding to GPR75 in TBI of the immature brain. Drug affinity responsive molecular target stability (DARTS) assays, cycloheximide (CHX) chase assays, and auto-dock assays were employed to analyze the interaction between 20-HETE and GPR75. The expression levels of cytochrome P450 4A (CYP4A) and GPR75 in activated microglia in an immature brain TBI model were observed by western blot and multiple immunofluorescence staining. The effects of different levels of 20-HETE expression and lentivirus-mediated GPR75 gene silencing on 20-HETE-induced inflammatory factor release from BV-2 cells were observed by enzyme-linked immunoassay (ELISA). The phosphorylation levels of the downstream Src kinase, epidermal growth factor receptor (EGFR), and nuclear factor (NF)-κB were assessed using western blot. Cell viability and apoptosis were detected by CCK-8 and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. 20-HETE bound to the GPR75 protein and inhibited its degradation. GPR75 gene silencing reversed the 20-HETE-induced inflammatory activation of BV-2 cells, effectively inhibiting the activation of the Src/EGFR/NF-κB pathway and the effects of 20-HETE on cell viability and the apoptosis rate. In contrast, overexpression of GPR75 had the opposite effect. In addition, after immature brain TBI, the 20-HETE and GPR75 expression levels were upregulated in microglia, with significant activation of the Src/EGFR/NF-κB pathway. Inhibition of 20-HETE synthesis with N-hydroxy-N’-(4-n-butyl-2-methylphenyl) formamidine (HET0016) produced the opposite effect. 20-HETE regulates the Src/EGFR/NF-κB signaling pathway via GPR75 to activate microglia, promoting immature brain TBI. These findings offer a novel target for promoting the brain injury effect of 20-HETE.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Acute Haloperidol Treatment on Dopaminergic Markers, GAD67, and A2A Receptors in Rats with High and Low VCMs 急性氟哌啶醇治疗对高VCMs和低VCMs大鼠多巴胺能标记物、GAD67和A2A受体的影响
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-14 DOI: 10.1007/s11064-024-04275-w
Getulio Nicola Bressan, Talita Rodrigues, Maria Eduarda Brandli da Silva, Maria Rosa Chitolina Schetinger, Rahisa Scussel, Ricardo Andrez Machado-de-Ávila, Jéssica da Silva Abel, Roselei Fachinetto
{"title":"Effects of Acute Haloperidol Treatment on Dopaminergic Markers, GAD67, and A2A Receptors in Rats with High and Low VCMs","authors":"Getulio Nicola Bressan,&nbsp;Talita Rodrigues,&nbsp;Maria Eduarda Brandli da Silva,&nbsp;Maria Rosa Chitolina Schetinger,&nbsp;Rahisa Scussel,&nbsp;Ricardo Andrez Machado-de-Ávila,&nbsp;Jéssica da Silva Abel,&nbsp;Roselei Fachinetto","doi":"10.1007/s11064-024-04275-w","DOIUrl":"10.1007/s11064-024-04275-w","url":null,"abstract":"<div><p>Vacuous chewing movements (VCM) have been utilized as an experimental model of orofacial dyskinesia (OD) in rodents to study the underlying molecular mechanisms related to tardive dyskinesia (TD). This study aimed to investigate if the acute treatment with haloperidol can alter components of the dopaminergic synapse or its modulators such as glutamic acid decarboxylase (GAD<sub>67</sub>) and adenosine 2A (A<sub>2A</sub>) receptor. Furthermore, to evaluate if changes in molecular markers are associated with the number of VCMs induced by haloperidol in rats it is proposing a method to classify the animals into High and Low VCM groups. Here, we treated rats with haloperidol decanoate (single injection, intramuscularly, 28 mg/Kg of unconjugated haloperidol) and evaluated the number of VCMs after 4 weeks. Haloperidol-treated rats were divided into three groups (Low, High, and Spontaneous VCM) according to the evaluation of the VCM profile proposed here. After, dopamine (DA) levels, monoamine oxidase (MAO) activity, and the immunoreactivity of tyrosine hydroxylase (TH), dopamine transporter (DAT), D<sub>2</sub> receptor, GAD<sub>67</sub>, and A<sub>2A</sub> were determined in brain structures. No significant differences were found in DA levels, MAO activity, and immunoreactivity of the TH, DAT, D<sub>2</sub> receptor, GAD<sub>67</sub>, and A<sub>2A</sub> receptor in brain structures. VCM intensity was correlated with TH immunoreactivity in <i>Sn</i> in the High VCM group while it was inversely correlated with the immunoreactivity of the A<sub>2A</sub> receptor in the striatum of the Spontaneous VCM group. Other significant correlations were found considering the VCM profile suggesting that High VCM after acute haloperidol treatment seems to be associated with the lack of ability to reorganize the neurotransmission in the nigrostriatal pathway. Further studies could clarify the main targets involved in the motor side effects of antipsychotics. The present study demonstrated an easy way to separate the animals into High and Low VCMs.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators 螺旋乳杆菌通过重塑肠道-大脑轴介质改善受控皮层撞击损伤引起的神经系统失调。
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-14 DOI: 10.1007/s11064-024-04251-4
Tulasi Pasam, Hara Prasad Padhy, Manoj P. Dandekar
{"title":"Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators","authors":"Tulasi Pasam,&nbsp;Hara Prasad Padhy,&nbsp;Manoj P. Dandekar","doi":"10.1007/s11064-024-04251-4","DOIUrl":"10.1007/s11064-024-04251-4","url":null,"abstract":"<div><p>Considerable studies augured the potential of gut microbiota-based interventions in brain injury-associated complications. Based on our earlier study results, we envisaged the sex-specific neuroprotective effect of <i>Lactobacillus helveticus</i> by remodeling of gut-brain axis. In this study, we investigated the effect of <i>L. helveticus</i> on neurological complications in a mouse model of controlled cortical impact (CCI). Adult, male and female, C57BL/6 mice underwent CCI surgery and received <i>L. helveticus</i> treatment for six weeks. Sensorimotor function was evaluated via neurological severity score and rotarod test. Long-term effects on anxiety-like behavior and cognition were assessed using the elevated-zero maze (EZM) and novel object recognition test (NORT). Brain perilesional area, blood, colon, and fecal samples were collected post-CCI for molecular biology analysis. CCI-operated mice displayed significant neurological impairments at 1-, 3-, 5-, and 7-days post-injury (dpi) and exhibited altered behavior in EZM and NORT compared to sham-operated mice. However, these behavioral changes were ameliorated in mice receiving <i>L. helveticus</i>. GFAP, Iba-1, TNF-α, and IL-1β expressions and corticotrophin-releasing hormone (CRH) levels were elevated in the perilesional cortex of CCI-operated male/female mice. These elevated biomarkers and decreased BDNF levels in both male/female mice were modified by <i>L. helveticus</i> treatment. Additionally, <i>L. helveticus</i> treatment restored altered short-chain fatty acids (SCFAs) levels in fecal samples and improved intestinal integrity but did not affect decreased plasma levels of progesterone and testosterone in CCI mice. These results indicate that <i>L. helveticus</i> exerts beneficial effects in the CCI mouse model by mitigating inflammation and remodeling of gut microbiota-brain mediators.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cannabidiol Plays a Modulatory Function on the Methamphetamine-Induced Reward Through Hippocampal D2-Like Dopamine Receptors 大麻二酚通过海马D2样多巴胺受体对甲基苯丙胺诱导的奖赏起调节作用
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-14 DOI: 10.1007/s11064-024-04256-z
Mahsa Mohammadi, Seyed Erfan Omidiani, Ronak Azizbeigi, Abbas Haghparast
{"title":"Cannabidiol Plays a Modulatory Function on the Methamphetamine-Induced Reward Through Hippocampal D2-Like Dopamine Receptors","authors":"Mahsa Mohammadi,&nbsp;Seyed Erfan Omidiani,&nbsp;Ronak Azizbeigi,&nbsp;Abbas Haghparast","doi":"10.1007/s11064-024-04256-z","DOIUrl":"10.1007/s11064-024-04256-z","url":null,"abstract":"<div><p>Methamphetamine (METH), a stimulant that is extremely addictive, directly affects the central nervous system. METH's abuse and consumption are directly linked to mental illnesses, psychosis, and behavioral and cognitive impairments. It may disrupt the reward system and dopaminergic transmission. METH's rewarding qualities are associated with a rise in dopamine. Additionally, cannabidiol (CBD), one of the primary cannabinoid components of the cannabis plant, significantly affects dopaminergic transmission and may aid in reward- and addiction-related behaviors. To shed light on the role of the D2-like dopamine receptor (D2R) in the hippocampal dentate gyrus (DG), the present study examined the effects of CBD on the acquisition and expression of the conditioned place preference (CPP) induced by METH. The function of D2R was ascertained by delivering Sulpiride microinjections, as a D2R antagonist Sulpiride (0.25, 1, and 4 μg/0.5 μL DMSO12%) into the DG. Moreover, an intracerebroventricular injection of CBD at a dose of 10 μg/5 μL for CPP acquisition and 50 μg/5 μL for CPP expression was given to rats. According to the current research, CBD dramatically reduced the acquisition and expression of CPP resulting from METH. However, Sulpiride suppressed the effect of CBD on METH-induced CPP acquisition and expression, with a greater impact on expression experiments. Ultimately, this study proposed that the expression experiment of METH-induced CPP appears to be heavily dependent on D2R in the DG.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective Effects of Thymol and p-Cymene in Immobilized Male rats through Alterations in Molecular, Biochemical, Histological, and Behavioral Parameters 百里酚和对雏菊烯通过分子、生化、组织学和行为学参数的变化对固定雄性大鼠的神经保护作用
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-14 DOI: 10.1007/s11064-024-04271-0
Masoumeh Asle-Rousta, Yasaman Peirovy
{"title":"Neuroprotective Effects of Thymol and p-Cymene in Immobilized Male rats through Alterations in Molecular, Biochemical, Histological, and Behavioral Parameters","authors":"Masoumeh Asle-Rousta,&nbsp;Yasaman Peirovy","doi":"10.1007/s11064-024-04271-0","DOIUrl":"10.1007/s11064-024-04271-0","url":null,"abstract":"<div><p>The research was conducted to examine the neuroprotective effect of thymol and its precursor p-cymene on chronic immobility stress in adult male Wistar rats. The rats were subjected to 2.5 h of stress every day for 14 consecutive days by placing them inside a restrainer. Thymol (10 mg/kg) and p-cymene (50 mg/kg) were given to the rats during the same period. The results showed that thymol and p-cymene prevented the increase of MDA level, decline of GSH level, and decrease of SOD and GPx activity in the hippocampus of rats exposed to stress. These monoterpenes also prevented the increase in the expression of <i>Tnfa</i>, <i>Il1b</i>, <i>Tlr4</i>, and <i>Nfkb</i>, and the decrease in the expression of <i>Nrf2</i>, <i>Ho1</i>, and <i>Bdnf</i>. In addition, thymol and p-cymene inhibited the increase in the expression and activity of acetylcholinesterase in the hippocampus of animals exposed to immobility and enhanced the expression of <i>A7nachr</i>. They also reduced neuronal death in the CA1 region of stressed animals and improved their performance in the Morris water maze and elevated plus maze tests. Based on these findings, thymol and p-cymene may be effective in preventing neurodegenerative diseases as they reduce oxidative stress and neuroinflammation, strengthen ACh signaling, and stimulate <i>Bdnf</i> expression.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Astrocyte–Endotheliocyte Axis in the Regulation of the Blood–Brain Barrier 更正:调节血脑屏障的星形胶质细胞-内皮细胞轴
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-13 DOI: 10.1007/s11064-024-04277-8
Augustas Pivoriūnas, Alexei Verkhratsky
{"title":"Correction: Astrocyte–Endotheliocyte Axis in the Regulation of the Blood–Brain Barrier","authors":"Augustas Pivoriūnas,&nbsp;Alexei Verkhratsky","doi":"10.1007/s11064-024-04277-8","DOIUrl":"10.1007/s11064-024-04277-8","url":null,"abstract":"","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotinamide and Nicotinoyl-Gamma-Aminobutyric Acid as Neuroprotective Agents Against Type 1 Diabetes-Induced Nervous System Impairments in Rats 烟酰胺和烟酰胺酰-γ-氨基丁酸是防止 1 型糖尿病诱发大鼠神经系统损伤的神经保护剂
IF 3.7 3区 医学
Neurochemical Research Pub Date : 2024-11-11 DOI: 10.1007/s11064-024-04257-y
Tamara Kuchmerovska, Tetiana Tykhonenko, Lesya Yanitska, Serhiy Savosko, Iryna Pryvrotska
{"title":"Nicotinamide and Nicotinoyl-Gamma-Aminobutyric Acid as Neuroprotective Agents Against Type 1 Diabetes-Induced Nervous System Impairments in Rats","authors":"Tamara Kuchmerovska,&nbsp;Tetiana Tykhonenko,&nbsp;Lesya Yanitska,&nbsp;Serhiy Savosko,&nbsp;Iryna Pryvrotska","doi":"10.1007/s11064-024-04257-y","DOIUrl":"10.1007/s11064-024-04257-y","url":null,"abstract":"<div><p>Diabetes is a multifunctional chronic disease that affects both the central and/or peripheral nervous systems. This study assessed whether nicotinamide (NAm) or conjugate of nicotinic acid with gamma-aminobutyric acid (N-GABA) could be potential neuroprotective agents against type 1 diabetes (T1D)-induced nervous system impairments in rats. After six weeks of T1D, induced by streptozotocin, nonlinear male Wistar rats were treated for two weeks with NAm (100 mg/kg, i. p.) or N-GABA (55 mg/kg, i. p.). Expression levels of myelin basic protein (MBP) were analyzed by immunoblotting. Polyol pathway parameters of the sciatic nerves were assessed spectrophotometrically, and their structure was examined histologically. NAm had no effect on blood glucose or body weight in T1D, while N-GABA reduced glucose by 1.5-fold. N-GABA also increased MBP expression by 1.48-fold, enhancing neuronal myelination, while NAm showed no such effect. Activation of the polyol pathway was observed in the T1D sciatic nerves. Both compounds decreased sorbitol content and aldose reductase activity, thereby alleviating changes similar to primary degeneration in the sciatic nerves and preventing peripheral neuropathy development. These results demonstrate that NAm and, more notably, N-GABA may exert neuroprotective effects against T1D-induced nervous system impairments by increasing MBP expression levels, improving myelination processes in the brain, inhibiting the polyol pathway, and partially restoring morphometric parameters in the sciatic nerves. This suggests their potential therapeutic efficacy as promising agents for the prevention of T1D-induced nervous system alterations.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信