Induction of Neural Differentiation and Protection by a Novel Slow-Release Nanoparticle Estrogen Construct in a Rat Model of Spinal Cord Injury

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Azizul Haque, Vandana Zaman, Kelsey P. Drasites, Denise Matzelle, Sushant Sawant, Alexey Vertegel, Abhay Varma, Naren L. Banik
{"title":"Induction of Neural Differentiation and Protection by a Novel Slow-Release Nanoparticle Estrogen Construct in a Rat Model of Spinal Cord Injury","authors":"Azizul Haque,&nbsp;Vandana Zaman,&nbsp;Kelsey P. Drasites,&nbsp;Denise Matzelle,&nbsp;Sushant Sawant,&nbsp;Alexey Vertegel,&nbsp;Abhay Varma,&nbsp;Naren L. Banik","doi":"10.1007/s11064-024-04289-4","DOIUrl":null,"url":null,"abstract":"<div><p>Spinal cord injury (SCI) is a complex debilitating condition leading to permanent life-long neurological deficits. Estrogen (E2) treatment is known to be neuroprotectant in SCI. This hormone is highly pleiotropic and has been shown to decrease apoptosis, modulate calcium signaling, regulate growth factor expression, act as an anti-inflammatory, and drive angiogenesis. These beneficial effects were found in our earlier study at the low dose of 10 µg/kg E2 in rats. However, the dose remains non-physiologic, which poses a safety hurdle for clinical use. Thus, we recently devised/constructed a fast release nanoparticle (NP) estrogen embedded (FNP-E2) construct and tested a focal delivery system in a contused SCI rat model which showed protection in the short run. In the current study, we have developed a novel slow-release NP estrogen (SNP-E2) delivery system that shows sustained release of E2 in the injured spinal cord and no systemic exposure in the host. The study of E2 release and kinetics of this SNP-E2 construct in vitro and in vivo supported this claim. Delivery of E2 to the injured spinal cord via this approach reduced inflammation and gliosis, and induced microglial differentiation of M1 to M2 in rats after SCI. Analysis of spinal cord samples showed improved myelination and survival signals (AKT) as demonstrated by western blot analysis. SNP-E2 treatment also induced astrocytic differentiation into neuron-like (MAP2/NeuN) cells, supported the survival of oligodendrocyte precursor cells (OPC), and improved bladder and locomotor function in rats following SCI. These data suggest that this novel delivery strategy of SNP-E2 to the injured spinal cord may provide a safe and effective therapeutic approach to treat individuals suffering from SCI.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11064-024-04289-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04289-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a complex debilitating condition leading to permanent life-long neurological deficits. Estrogen (E2) treatment is known to be neuroprotectant in SCI. This hormone is highly pleiotropic and has been shown to decrease apoptosis, modulate calcium signaling, regulate growth factor expression, act as an anti-inflammatory, and drive angiogenesis. These beneficial effects were found in our earlier study at the low dose of 10 µg/kg E2 in rats. However, the dose remains non-physiologic, which poses a safety hurdle for clinical use. Thus, we recently devised/constructed a fast release nanoparticle (NP) estrogen embedded (FNP-E2) construct and tested a focal delivery system in a contused SCI rat model which showed protection in the short run. In the current study, we have developed a novel slow-release NP estrogen (SNP-E2) delivery system that shows sustained release of E2 in the injured spinal cord and no systemic exposure in the host. The study of E2 release and kinetics of this SNP-E2 construct in vitro and in vivo supported this claim. Delivery of E2 to the injured spinal cord via this approach reduced inflammation and gliosis, and induced microglial differentiation of M1 to M2 in rats after SCI. Analysis of spinal cord samples showed improved myelination and survival signals (AKT) as demonstrated by western blot analysis. SNP-E2 treatment also induced astrocytic differentiation into neuron-like (MAP2/NeuN) cells, supported the survival of oligodendrocyte precursor cells (OPC), and improved bladder and locomotor function in rats following SCI. These data suggest that this novel delivery strategy of SNP-E2 to the injured spinal cord may provide a safe and effective therapeutic approach to treat individuals suffering from SCI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信