Md. Tanvir Hossain, Md. Abdus Shahid, Nadim Mahmud, Ahasan Habib, Md. Masud Rana, Shadman Ahmed Khan, Md. Delwar Hossain
{"title":"Research and application of polypropylene: a review","authors":"Md. Tanvir Hossain, Md. Abdus Shahid, Nadim Mahmud, Ahasan Habib, Md. Masud Rana, Shadman Ahmed Khan, Md. Delwar Hossain","doi":"10.1186/s11671-023-03952-z","DOIUrl":"https://doi.org/10.1186/s11671-023-03952-z","url":null,"abstract":"<p>Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent research in PP and its advanced functional applications. The chronological development and fundamentals of PP are mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research and promoting innovation in polymer applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"4 1","pages":""},"PeriodicalIF":4.703,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139083102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Realization of collimated specific profiles in rotation-symmetrical beam shaping system with divergent light source","authors":"Cheng-Mu Tsai, Tzu-Chen Yu, Pin Han, Yi-Chin Fang","doi":"10.1186/s11671-023-03934-1","DOIUrl":"10.1186/s11671-023-03934-1","url":null,"abstract":"<div><p>A simple numerical method is proposed for the design of two aspherical surfaces, each comprising multiple segmented refractive planes, for generating a collimated beam with a specific irradiance profile in a beam shaping system with a divergent light source. However, in real-world manufacturing, this performance improvement is obtained at the expense of a greater cost and complexity. Accordingly, a second algorithm is proposed which maximizes the number of rays passing through the central regions of the refractive planes in the second aspherical surface and hence minimizes the total number of segments required to achieve the same beam shaping performance. The feasibility of the proposed method is demonstrated through the design of two aspherical lenses for generating collimated output beams with ring- and triangle-like irradiance profiles, respectively. The experimental results show that the beam profiles are in close agreement with the desired irradiance distributions. In general, the results indicate that the proposed method provides a versatile and efficient approach for achieving the desired collimated profile in beam forming systems with a divergent light source.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitilaksha Hiremath, Sunay Bhat, Ramiz Boy, Maria Cecilia Evora, Amit K. Naskar, Jimmy Mays, Gajanan Bhat
{"title":"Carbon nanofibers based carbon–carbon composite fibers","authors":"Nitilaksha Hiremath, Sunay Bhat, Ramiz Boy, Maria Cecilia Evora, Amit K. Naskar, Jimmy Mays, Gajanan Bhat","doi":"10.1186/s11671-023-03944-z","DOIUrl":"10.1186/s11671-023-03944-z","url":null,"abstract":"<div><p>Textile grade polyacrylonitrile (PAN) was used as a precursor material for carbon fiber preparation. E-beam irradiated polyacrylonitrile grafted carbon nanofibers were dispersed in polyacrylonitrile solution (dissolved in dimethyl formamide). Carbon nanofibers (CNF) infused polyacrylonitrile solution was wet spun on a lab-scale wet-spinning setup to form 50 to 70 µm diameter fibers with 3.2 wt.% CNF-PAN, 6.4 wt.% CNF-PAN, and neat PAN. Precursor fibers were characterized for thermal, mechanical and morphological properties using various techniques. Drawing the precursor fibers further enhanced polymer chain orientation and coalesced the voids, enhancing tensile strength and modulus by more than 150% compared to those of the undrawn fibers. Precursor composite fibers on carbonization showed enhanced strength, compared to that of pristine PAN fibers, by four times and stiffness by 14 times. The carbon–carbon composite fibers were further characterized with SEM/FIB, XRD and tensile strength. The property improvements were dependent on the uniform distribution of carbon nanofibers, and surface modification of carbon nanofibers further enabled their dispersion in the composite fibers. Furthermore, 3.2 wt.% CNFs in PAN fibers showed maximum improvement in properties compared to 6.4 wt.% CNF in PAN fibers, indicating that the property enhancements go through a maximum and then drop off due to challenge in getting uniform distribution of nanofibers.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloe Trayford, Alissa Wilhalm, Pamela Habibovic, Hubert Smeets, Florence van Tienen, Sabine van Rijt
{"title":"One-pot, degradable, silica nanocarriers with encapsulated oligonucleotides for mitochondrial specific targeting","authors":"Chloe Trayford, Alissa Wilhalm, Pamela Habibovic, Hubert Smeets, Florence van Tienen, Sabine van Rijt","doi":"10.1186/s11671-023-03926-1","DOIUrl":"10.1186/s11671-023-03926-1","url":null,"abstract":"<div><p>Mutations in nuclear and mitochondrial genes are responsible for severe chronic disorders such as mitochondrial myopathies. Gene therapy using antisense oligonucleotides is a promising strategy to treat mitochondrial DNA (mtDNA) diseases by blocking the replication of the mutated mtDNA. However, transport vehicles are needed for intracellular, mitochondria-specific transport of oligonucleotides. Nanoparticle (NP) based vectors such as large pore mesoporous silica nanoparticles (LP) often rely on surface complexation of oligonucleotides exposing them to nucleases and limiting mitochondria targeting and controlled release ability. In this work, stable, fluorescent, hollow silica nanoparticles (HSN) that encapsulate and protect oligonucleotides in the hollow core were synthesized by a facile one-pot procedure. Both rhodamine B isothiocyanate and bis[3-(triethoxysilyl)propyl]tetrasulfide were incorporated in the HSN matrix by co-condensation to enable cell tracing, intracellular-specific degradation and controlled oligonucleotide release. We also synthesized LP as a benchmark to compare the oligonucleotide loading and release efficacy of our HSN. Mitochondria targeting was enabled by NP functionalization with cationic, lipophilic Triphenylphosphine (TPP) and, for the first time a fusogenic liposome based carrier, previously reported under the name MITO-Porter. HSN exhibited high oligonucleotide incorporation ratios and release dependent on intracellular degradation. Further, MITO-Porter capping of our NP enabled delayed, glutathione (GSH) responsive oligonucleotide release and mitochondria targeting at the same efficiency as TPP functionalized NP. Overall, our NP are promising vectors for anti-gene therapy of mtDNA disease as well as many other monogenic disorders worldwide.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanobiomaterials: exploring mechanistic roles in combating microbial infections and cancer","authors":"Neha Rawat, Nabeel Ahmad, Pratishtha Raturi, Nirjara Singhvi, Nitin Sahai, Preeti Kothiyal","doi":"10.1186/s11671-023-03946-x","DOIUrl":"10.1186/s11671-023-03946-x","url":null,"abstract":"<div><p>The initiation of the \"nanotechnology era\" within the past decade has been prominently marked by advancements in biomaterials. This intersection has opened up numerous possibilities for enhancing the detection, diagnosis, and treatment of various illnesses by leveraging the synergy between biomaterials and nanotechnology. The term \"nano biomaterials\" referring to biomaterials featuring constituent or surface feature sizes below 100 nm, presents a realm of extraordinary materials endowed with unique structures and properties. Beyond addressing common biomedical challenges, these nano biomaterials contribute unprecedented insights and principles that enrich our understanding of biology, medicine, and materials science. A critical evaluation of recent technological progress in employing biomaterials in medicine is essential, along with an exploration of potential future trends. Nanotechnology breakthroughs have yielded novel surfaces, materials, and configurations with notable applications in the biomedical domain. The integration of nanotechnology has already begun to enhance traditional biomedical practices across diverse fields such as tissue engineering, intelligent systems, the utilization of nanocomposites in implant design, controlled release systems, biosensors, and more. This mini review encapsulates insights into biomaterials, encompassing their types, synthesis methods, and the roles of organic and inorganic nanoparticles, elucidating their mechanisms of action. Furthermore, the focus is squarely placed on nano biomaterials and their versatile applications, with a particular emphasis on their roles in anticancer and antimicrobial interventions. This review underscores the dynamic landscape of nanotechnology, envisioning a future where nano biomaterials play a pivotal role in advancing medical applications, particularly in combating cancer and microbial infections.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gayathri Unnikrishnan, Anjumol Joy, M. Megha, Elayaraja Kolanthai, M. Senthilkumar
{"title":"Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review","authors":"Gayathri Unnikrishnan, Anjumol Joy, M. Megha, Elayaraja Kolanthai, M. Senthilkumar","doi":"10.1186/s11671-023-03943-0","DOIUrl":"10.1186/s11671-023-03943-0","url":null,"abstract":"<div><p>The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO<sub>2</sub> nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood–Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher’s perspective, which could open a new pathway.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03943-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138741152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success","authors":"Pragati Ramesh Kumbhar, Prakash Kumar, Aarti Lasure, Ravichandiran Velayutham, Debabrata Mandal","doi":"10.1186/s11671-023-03913-6","DOIUrl":"10.1186/s11671-023-03913-6","url":null,"abstract":"<div><p>The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03913-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138741159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. G. Prabitha, Jhelai Sahadevan, Maya Madhavan, S. Esakki Muthu, Ikhyun Kim, T. K. Sudheer, P. Sivaprakash
{"title":"Effect of Yttrium doping on antibacterial and antioxidant property of LaTiO3","authors":"V. G. Prabitha, Jhelai Sahadevan, Maya Madhavan, S. Esakki Muthu, Ikhyun Kim, T. K. Sudheer, P. Sivaprakash","doi":"10.1186/s11671-023-03942-1","DOIUrl":"10.1186/s11671-023-03942-1","url":null,"abstract":"<div><p>The advancement of multidrug-resistant bacterial strains and their adverse effects is one of the most significant global health issues. The perovskite nanomaterial with combined antioxidant and antibacterial activities in one molecule has the potential for improved therapeutic solutions. In this work, Yttrium-doped Lanthanum Titanate (LaTi<sub>1 −<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3</sub>, where <i>x</i> = 0, 0.05, and 0.1) was synthesized using auto combustion technique. Excellent crystalline structure with a tetragonal system is revealed by X-ray diffraction analysis (XRD). UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), Fourier transform infrared (FTIR), and photoluminescence (PL) were used to study its optical characteristics. The field emission scanning electron microscope (FE-SEM) shows rod-like pellet-shaped Yttrium-doped nanostructures, and the elements present were confirmed with the Energy Dispersive X-Ray Analysis (EDAX). Various concentrations of the synthesized materials were tested for antibacterial activity against Gram-positive (<i>Staphylococcus aureus</i> 902) and Gram-negative (<i>E. coli</i> 443) strains using the agar-well diffusion method with gentamicin antibiotic as a positive control. High antibacterial activity of 87.1% and 83.3% was shown by 10% Yttrium-doped LaTiO<sub>3</sub> (LY(0.1)TO) at 500 mg/mL against both positive and negative stains, respectively. Moreover, the antioxidant properties of synthesized materials were assessed with IC50 values of 352.33 µg/mL, 458.055 µg/mL, and 440.163 µg/mL for samples LaTi<sub>1 −<i> x</i></sub>Y<sub><i>x</i></sub>O<sub>3</sub>, where x = 0, 0.05, and 0.1 respectively. The antibacterial and antioxidant capabilities of the proposed samples illustrate their applicability in various biomedical applications.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03942-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chitosan-insulin nano-formulations as critical modulators of inflammatory cytokines and Nrf-2 pathway to accelerate burn wound healing","authors":"Deepinder Sharda, Sandip Ghosh, Pawandeep Kaur, Biswarup Basu, Diptiman Choudhury","doi":"10.1186/s11671-023-03941-2","DOIUrl":"10.1186/s11671-023-03941-2","url":null,"abstract":"<div><p>Burn injuries are characterized by prolonged inflammatory phases, neurovascular damage, and hypermetabolism, eventually causing improper tissue regeneration. Insulin has gained considerable attention in normal and diabetic wound healing, yet its role in burn wounds remains poorly understood. In this study, insulin-chitosan nano-formulations (ICNP) were synthesized using a simple and robust mechanism and characterized to monitor specific interactions between insulin and chitosan, and the particles measuring approximately 30 nm in size exhibited mild alterations in the amide I, II, and III bonds of the insulin protein along with impressive insulin loading efficiency of 88.725 ± 0.295% under physiological conditions, and significantly improved burn wound healing in vitro (HEKa cells) and in vivo (murine third-degree burn model). The underlying mechanism behind superior wound closure and tissue remodeling was attributed to significant early phase reduction of pro-inflammatory cytokine IL-6 levels in ICNP-treated mice, while anti-inflammatory cytokine IL-10 levels became markedly elevated, resulting in enhanced re-epithelialization and collagen deposition. Furthermore, treatment of ICNP was associated with unregulated expression of Nrf-2, a key regulator of oxidative stress and inflammation, indicating their molecular crosstalk. These findings highlight the potential of ICNP as a promising therapeutic formulation for burn wound healing, promoting wound closure by modulating inflammatory phases, making it a valuable candidate for further clinical development in burn care.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03941-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kate Stokes, Kieran Clark, David Odetade, Mike Hardy, Pola Goldberg Oppenheimer
{"title":"Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications","authors":"Kate Stokes, Kieran Clark, David Odetade, Mike Hardy, Pola Goldberg Oppenheimer","doi":"10.1186/s11671-023-03938-x","DOIUrl":"10.1186/s11671-023-03938-x","url":null,"abstract":"<div><p>Nano-fabrication techniques have demonstrated their vital importance in technological innovation. However, low-throughput, high-cost and intrinsic resolution limits pose significant restrictions, it is, therefore, paramount to continue improving existing methods as well as developing new techniques to overcome these challenges. This is particularly applicable within the area of biomedical research, which focuses on sensing, increasingly at the point-of-care, as a way to improve patient outcomes. Within this context, this review focuses on the latest advances in the main emerging patterning methods including the two-photon, stereo, electrohydrodynamic, near-field electrospinning-assisted, magneto, magnetorheological drawing, nanoimprint, capillary force, nanosphere, edge, nano transfer printing and block copolymer lithographic technologies for micro- and nanofabrication. Emerging methods enabling structural and chemical nano fabrication are categorised along with prospective chemical and physical patterning techniques. Established lithographic techniques are briefly outlined and the novel lithographic technologies are compared to these, summarising the specific advantages and shortfalls alongside the current lateral resolution limits and the amenability to mass production, evaluated in terms of process scalability and cost. Particular attention is drawn to the potential breakthrough application areas, predominantly within biomedical studies, laying the platform for the tangible paths towards the adoption of alternative developing lithographic technologies or their combination with the established patterning techniques, which depends on the needs of the end-user including, for instance, tolerance of inherent limits, fidelity and reproducibility.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03938-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}