Nano Research最新文献

筛选
英文 中文
Phase-transition-free rivets for layered oxide potassium cathodes 用于层状氧化物钾阴极的无相变铆钉
IF 9.5 2区 材料科学
Nano Research Pub Date : 2024-08-13 DOI: 10.1007/s12274-024-6901-5
Jie Chen, Apparao M. Rao, Caitian Gao, Jiang Zhou, Limei Cha, Xiaoming Yuan, Bingan Lu
{"title":"Phase-transition-free rivets for layered oxide potassium cathodes","authors":"Jie Chen,&nbsp;Apparao M. Rao,&nbsp;Caitian Gao,&nbsp;Jiang Zhou,&nbsp;Limei Cha,&nbsp;Xiaoming Yuan,&nbsp;Bingan Lu","doi":"10.1007/s12274-024-6901-5","DOIUrl":"10.1007/s12274-024-6901-5","url":null,"abstract":"<div><p>As a cathode material for potassium-ion batteries (PIBs), manganese-based layered oxides have attracted widespread attention due to their low cost, ease of synthesis, and high performance. However, the Jahn-Teller effect caused by Mn<sup>3+</sup> and the irreversible phase transformation of the structure leads to poor cycle stability, limiting the development of layered oxides in PIBs. Herein, we demonstrate the use of phase-transition-free CaTiO<sub>3</sub> as rivets in K<sub>0.5</sub>Mn<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>2</sub> by a simple solid-state method. As verified by the <i>in situ</i> X-ray diffraction, the CaTiO<sub>3</sub> rivets effectively prevent the slippage of the transition metal layer during charge and discharge, inhibiting structural degradation. As a result, the obtained K<sub>0.5</sub>Mn<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>2</sub>-0.02CaTiO<sub>3</sub> shows excellent cycling stability and rate performance, with high capacities of 119.3 and 70.1 mAh·g<sup>-1</sup> at 20 and 1000 mA·g<sup>-1</sup>, respectively. At 200 mA·g<sup>-1</sup>, the capacity retention remains 94.7% after more than 300 cycles. This work represents a new avenue for designing and optimizing layered cathode materials for PIBs and other batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9671 - 9678"},"PeriodicalIF":9.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipocoacervate, a tunable vesicle for protein delivery 用于输送蛋白质的可调囊泡--脂溶胶囊泡
IF 9.5 2区 材料科学
Nano Research Pub Date : 2024-08-10 DOI: 10.1007/s12274-024-6889-6
Chia-Wei Yeh, Nathaniel Wright, Chelsea Loh, Nabeen Chu, Yadong Wang
{"title":"Lipocoacervate, a tunable vesicle for protein delivery","authors":"Chia-Wei Yeh,&nbsp;Nathaniel Wright,&nbsp;Chelsea Loh,&nbsp;Nabeen Chu,&nbsp;Yadong Wang","doi":"10.1007/s12274-024-6889-6","DOIUrl":"10.1007/s12274-024-6889-6","url":null,"abstract":"<div><p>Controlled delivery of proteins and other biologics is a growing medium of therapy for diseases previously untreatable. Here we report a self-assembling, tunable vesicle for the controlled delivery of growth factors and cytokines. Coacervate made of heparin and a biocompatible polycation, PEAD, forms the core of the vesicle; lipids form the membrane of the vesicle. We call this vesicle lipocoacervate (LipCo), which has a high affinity for growth factors and cytokines due to heparin. LipCo is a tunable protein delivery vehicle. The vesicle size is controlled through polymer and salt concentrations. Membrane functionalization enables potential for targeting capabilities with long-term storage through lyophilization. Importantly, the controlled delivery of therapeutics also avoids high toxicity to treated cells in vitro. Here we report on these key principles of LipCo assembly and design.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 10","pages":"9135 - 9140"},"PeriodicalIF":9.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic organic transformation reactions in green chemistry: Exploring nanocrystals and single atom catalysts 绿色化学中的电催化有机转化反应:探索纳米晶体和单原子催化剂
IF 9.5 2区 材料科学
Nano Research Pub Date : 2024-08-09 DOI: 10.1007/s12274-024-6887-8
Ziwei Deng, Yuexin Guo, Zhiyi Sun, Jie Lin, Huazhang Zhai, Wenxing Chen
{"title":"Electrocatalytic organic transformation reactions in green chemistry: Exploring nanocrystals and single atom catalysts","authors":"Ziwei Deng,&nbsp;Yuexin Guo,&nbsp;Zhiyi Sun,&nbsp;Jie Lin,&nbsp;Huazhang Zhai,&nbsp;Wenxing Chen","doi":"10.1007/s12274-024-6887-8","DOIUrl":"10.1007/s12274-024-6887-8","url":null,"abstract":"<div><p>Organic synthesis chemistry plays a crucial role in supporting social sustainable development and finds widespread applications across various fields. Electrocatalysis, with its benefits of high efficiency, mild reaction conditions, controllability, and environmental friendliness, stands out as one of the most effective strategies for driving the transformation of organic substrates. In recent years, nanocrystals (NCs) and single atom catalysts (SACs) have garnered significant attention in the realm of electrocatalytic organic transformation. This article presents a comprehensive overview of the applications of NCs and SACs in electrocatalytic organic transformation. It delves into advanced catalysts for electrocatalysis of representative substrates, covering both anodic oxidation and cathodic reduction aspects, and addresses their synthesis, characterization, catalytic mechanism, and performance. The ultimate goal of this review is to serve as a valuable reference and a source of inspiration for further exploration into the development of more effective catalysts for electrocatalytic organic transformation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9326 - 9344"},"PeriodicalIF":9.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient synthesis of IrPtPdNi/GO nanocatalysts for superior performance in water electrolysis 高效合成 IrPtPdNi/GO 纳米催化剂,在水电解中发挥卓越性能
IF 9.9 2区 材料科学
Nano Research Pub Date : 2024-08-08 DOI: 10.1007/s12274-024-6900-6
Sanha Jang, Young Hwa Yun, Jin Gyu Lee, Kyung Hee Oh, Shin Wook Kang, Jung-Il Yang, MinJoong Kim, Changsoo Lee, Ji Chan Park
{"title":"Efficient synthesis of IrPtPdNi/GO nanocatalysts for superior performance in water electrolysis","authors":"Sanha Jang, Young Hwa Yun, Jin Gyu Lee, Kyung Hee Oh, Shin Wook Kang, Jung-Il Yang, MinJoong Kim, Changsoo Lee, Ji Chan Park","doi":"10.1007/s12274-024-6900-6","DOIUrl":"https://doi.org/10.1007/s12274-024-6900-6","url":null,"abstract":"<p>Traditional iridium (Ir) oxide catalysts have faced significant limitations in water electrolysis, particularly under acidic conditions where instability and degradation severely restrict the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). To overcome these challenges, this study successfully synthesized highly dispersed IrPtPdNi alloy nanoparticles on a graphene oxide support using a vertically moving reactor, demonstrating exceptional performance in water electrolysis. These nanoparticles, synthesized via a fast-moving bed pyrolysis method, combine iridium, platinum, palladium, and nickel. They exhibit lower overpotentials in OER and comparable performance in HER to commercial catalysts, while also offering enhanced stability. These results surpass the limitations of traditional catalysts, marking significant progress toward more efficient and sustainable hydrogen production technologies. This advancement is expected to contribute significantly to the development of sustainable energy systems by innovatively enhancing the performance of catalysts in the electrochemical water-splitting process.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"2011 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy 通过纳米强化策略为高效二氧化碳电还原量身定制微环境
IF 9.5 2区 材料科学
Nano Research Pub Date : 2024-08-07 DOI: 10.1007/s12274-024-6870-4
Lulu Chen, Minhan Li, Jia-Nan Zhang
{"title":"Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy","authors":"Lulu Chen,&nbsp;Minhan Li,&nbsp;Jia-Nan Zhang","doi":"10.1007/s12274-024-6870-4","DOIUrl":"10.1007/s12274-024-6870-4","url":null,"abstract":"<div><p>The electrocatalytic conversion of CO<sub>2</sub> to produce fuels and chemicals holds great promise, not only to provide an alternative to fossil feedstocks, but also to use renewable electricity to convert and recycle the greenhouse gas CO<sub>2</sub> to mitigate climate problems. However, the selectivity and reaction rates for the conversion of CO<sub>2</sub> into desirable carbon-based products, especially multicarbon products with high added value, are still insufficient for commercial applications, which is attributed to insufficiently favourable microenvironmental conditions in the vicinity of the catalyst. The construction of catalysts/electrodes with confined structures can effectively improve the reaction microenvironment in the vicinity of the electrodes and thus effectively direct the reaction towards the desired pathway. In this review, we firstly introduce the effects of the microenvironment at the electrode-electrolyte interface including local pH, local intermediate concentration, and local cation concentration on CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) as well as the mechanism of action, and then shed light on the microenvironmental modulation within the confined space, and finally and most importantly, introduce the design strategy of CO<sub>2</sub>RR catalyst/electrode based on the confinement effect.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 9","pages":"7880 - 7899"},"PeriodicalIF":9.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quick evaluation and regulation of the maximum instantaneous power and matching resistance for droplet-based electricity generators 快速评估和调节液滴式发电机的最大瞬时功率和匹配电阻
IF 9.9 2区 材料科学
Nano Research Pub Date : 2024-08-06 DOI: 10.1007/s12274-024-6893-x
Zhifeng Hu, Huamei Zhong, He Shan, Ruzhu Wang
{"title":"Quick evaluation and regulation of the maximum instantaneous power and matching resistance for droplet-based electricity generators","authors":"Zhifeng Hu, Huamei Zhong, He Shan, Ruzhu Wang","doi":"10.1007/s12274-024-6893-x","DOIUrl":"https://doi.org/10.1007/s12274-024-6893-x","url":null,"abstract":"<p>Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide applications of DEGs. However, the governing law of the maximum instantaneous power and matching resistance is lacking and their determination suffers from heavy repetitive experiments, hindering the development of DEGs. Herein, we propose a quick evaluation method for the internal droplet impedance, instantaneous peak power, maximum instantaneous power and matching resistance which exhibits broad universality and excellent accuracy. Moreover, effects of diverse factors pertaining to droplets and devices are fully investigated, highlighting that the maximum instantaneous power and matching resistance can be effectively regulated across multiple orders of magnitudes by controlling the salt concentration. Our findings shed insights into the understanding, evaluation, and regulation of instantaneous power for DEGs, and shall promote the renovation of the DEG technology.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"64 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rGO aerogel embedded with organic–inorganic hybrid perovskite for lightweight broadband electromagnetic wave absorption 嵌入有机-无机混合过氧化物的 rGO 气凝胶用于轻质宽带电磁波吸收
IF 9.9 2区 材料科学
Nano Research Pub Date : 2024-08-06 DOI: 10.1007/s12274-024-6880-2
Xueying Zhao, Xiaohui Sun, Wei Wu, Peng Tang, JiaWei Du, Xuyang Zhang, Haining Qian, Ruihui Peng, Xiangwei Wang, Yaohong Zhang, Guohua Wu
{"title":"rGO aerogel embedded with organic–inorganic hybrid perovskite for lightweight broadband electromagnetic wave absorption","authors":"Xueying Zhao, Xiaohui Sun, Wei Wu, Peng Tang, JiaWei Du, Xuyang Zhang, Haining Qian, Ruihui Peng, Xiangwei Wang, Yaohong Zhang, Guohua Wu","doi":"10.1007/s12274-024-6880-2","DOIUrl":"https://doi.org/10.1007/s12274-024-6880-2","url":null,"abstract":"<p>Organic–inorganic hybrid perovskites are quite promising candidates in the field of electromagnetic wave (EMW) absorption due to their unique physicochemical properties. However, it is still a considerable challenge to satisfy the light weight, broad bandwidth, and strong absorption properties simultaneously. Herein, the solution of methylammonium lead iodide (MAPbI<sub>3</sub>) perovskites was infiltrated into the pores of reduced graphene oxide (rGO) aerogels. After drying, a series of MAPbI<sub>3</sub>/rGO composite aerogel (MGA) materials were synthesized by anchoring the MAPbI<sub>3</sub> perovskite nanoparticles to rGO sheets with the assistance of rGO templates. Through the adjustment of component ratios, excellent EMW absorption properties are obtained with the synergistic effects of polarization loss, conduction loss, and multiple reflection and scattering of MAPbI<sub>3</sub> and rGO. The porous structure of the aerogel and the suitable group distribution ratio allowed the MGA-4 samples to obtain excellent impedance matching and ultra-low density of ∼ 7.69 mg·cm<sup>−3</sup>. At a low filling ratio of 15 wt.%, the MGA-4 sample simultaneously achieves highly efficient and broadband EMW absorption performance at a thin thickness. The MGA-4 sample obtained a minimum reflection loss value of −64.35 dB and the effective absorption bandwidth (EAB) value of 5.4 GHz at a thickness of 2.08 mm and a maximum EAB (EAB<sub>max</sub>) value of 6.2 GHz under 2.22 mm. The MGA-5 sample obtained a maximum EAB value of 6.4 GHz with the thinckness of 2.16 mm. Furthermore, the simulation results of the radar cross-section (RCS) verified the component-optimized composites are capable of achieving excellent EMW attenuation. This paper provides a new approach and valuable reference for the development of hybrid perovskite-based microwave absorption materials with lightweight, ultra-broadband, and strong absorption properties.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"94 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective oxidation of emerging organic contaminants in heterogeneous Fenton-like systems 在类似芬顿的异质系统中选择性氧化新出现的有机污染物
IF 9.5 2区 材料科学
Nano Research Pub Date : 2024-08-06 DOI: 10.1007/s12274-024-6874-0
Sheng Wang, Yuxin Lu, Shangkun Pei, Xiang Li, Bo Wang
{"title":"Selective oxidation of emerging organic contaminants in heterogeneous Fenton-like systems","authors":"Sheng Wang,&nbsp;Yuxin Lu,&nbsp;Shangkun Pei,&nbsp;Xiang Li,&nbsp;Bo Wang","doi":"10.1007/s12274-024-6874-0","DOIUrl":"10.1007/s12274-024-6874-0","url":null,"abstract":"<div><p>Heterogeneous Fenton-like reaction shows great potential for eliminating organic substances (e.g. emerging organic contaminants (EOCs)) in water, which has been widely explored in recent decades. However, the catalytic mechanisms reported in current studies are extremely complicated because multiple mechanisms coexist and contribute to the removal efficiencies. Most importantly, heterogeneous systems show selective oxidation properties, which are crucial for improving the efficiencies in the catalytic elimination of organic substances. Thus, this critical review summarizes and compares the diverse existing mechanisms (non-radical and radical pathways) in heterogeneous catalytic processes based on recent studies. The typical oxidation mechanisms during selective advanced oxidation of EOCs were systematically discussed based on the following sections, including the selective adsorption and generation of reactive oxygen species (ROS) in photo/electron-Fenton and Fenton-like systems. Moreover, the non-radical pathways are discussed in depth by the singlet oxygen, high-valent metal-oxo, electron transfer process, etc. Moreover, the direct oxidative transfer process for the removal of EOCs was introduced in recent studies. Finally, the cost, feasibility as well as the sustainability of heterogeneous Fenton-like catalysts are summarized. This review offers useful guidance for developing suitable strategies to develop materials for decomposing the organic substrates.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9300 - 9325"},"PeriodicalIF":9.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries 锂导电固态电解质夹层的电解质设计,实现全固态锂金属电池的基准性能
IF 9.5 2区 材料科学
Nano Research Pub Date : 2024-08-03 DOI: 10.1007/s12274-024-6871-3
Cailing Fan, Niaz Ahmad, Tinglu Song, Chaoyuan Zeng, Xiaoxiao Liang, Qinxi Dong, Wen Yang
{"title":"Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries","authors":"Cailing Fan,&nbsp;Niaz Ahmad,&nbsp;Tinglu Song,&nbsp;Chaoyuan Zeng,&nbsp;Xiaoxiao Liang,&nbsp;Qinxi Dong,&nbsp;Wen Yang","doi":"10.1007/s12274-024-6871-3","DOIUrl":"10.1007/s12274-024-6871-3","url":null,"abstract":"<div><p>Sulfide-based solid-state electrolytes (SSEs) with high Li<sup>+</sup> conductivity (<span>(sigma_{text{Li}^{+}})</span>) and trifling grain boundaries have great potential for all-solid-state lithium-metal batteries (ASSLMBs). Nonetheless, the <i>in-situ</i> development of mixed ionic-electronic conducting solid-electrolyte interphase (SEI) at sulfide electrolyte/Li-metal anode interface induces uneven Li electrodeposition, which causes Li-dendrites and void formation, significantly severely deteriorating ASSLMBs. Herein, we propose a dual anionic, e.g., F and N, doping strategy to Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>, tuning its composition in conjunction with the chemistry of SEI. Therefore, novel Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub> glass-ceramic electrolyte (Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>-5LiF-3Li<sub>3</sub>N-gce) achieved superior ionic (4.33 mS·cm<sup>−1</sup>) and lowest electronic conductivity of 4.33 × 10<sup>−10</sup> S·cm<sup>−1</sup> and thus, offered superior critical current density of 0.90 mA·cm<sup>−2</sup> (2.5 times &gt; Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>) at room temperature (RT). Notably, Li//Li cell with Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub>-gce cycled stably over 1000 and 600 h at 0.2 and 0.3 mA·cm<sup>−2</sup> credited to robust and highly conductive SEI (<i>in-situ</i>) enriched with LiF and Li<sub>3</sub>N species. Li<sub>3</sub>N’s wettability renders SEI to be highly Li<sup>+</sup> conductive, ensures an intimate interfacial contact, blocks reductive reactions, prevents Li-dendrites and facilitates fast Li<sup>+</sup> kinetics. Consequently, LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> (NCA)/Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub>-gce/Li cell exhibited an outstanding first reversible capacity of 200.8/240.1 mAh·g<sup>−1</sup> with 83.67% Coulombic efficiency, retained 85.11% of its original reversible capacity at 0.3 mA·cm<sup>−2</sup> over 165 cycles at RT.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9640 - 9650"},"PeriodicalIF":9.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical vapor deposition synthesis of intrinsic van der Waals ferroelectric SbSI nanowires 化学气相沉积合成本征范德华铁电性 SbSI 纳米线
IF 9.5 2区 材料科学
Nano Research Pub Date : 2024-08-03 DOI: 10.1007/s12274-024-6895-8
Longyi Fu, Yang Zhao, Dapeng Li, Weikang Dong, Ping Wang, Jijian Liu, Denan Kong, Lin Jia, Yang Yang, Meiling Wang, Shoujun Zheng, Yao Zhou, Jiadong Zhou
{"title":"Chemical vapor deposition synthesis of intrinsic van der Waals ferroelectric SbSI nanowires","authors":"Longyi Fu,&nbsp;Yang Zhao,&nbsp;Dapeng Li,&nbsp;Weikang Dong,&nbsp;Ping Wang,&nbsp;Jijian Liu,&nbsp;Denan Kong,&nbsp;Lin Jia,&nbsp;Yang Yang,&nbsp;Meiling Wang,&nbsp;Shoujun Zheng,&nbsp;Yao Zhou,&nbsp;Jiadong Zhou","doi":"10.1007/s12274-024-6895-8","DOIUrl":"10.1007/s12274-024-6895-8","url":null,"abstract":"<div><p>Intrinsic ferroelectric materials play a critical role in the development of high-density integrated device. Despite some two-dimensional (2D) ferroelectrics have been reported, the research on one-dimensional (1D) intrinsic ferroelectric materials remains relatively scare since 1D atomic structures limit their van der Waals (vdW) epitaxy growth. Here, we report the synthesis of 1D intrinsic vdW ferroelectric SbSI nanowires via a confined-space chemical vapor deposition. By precisely controlling the partial vapor pressure of I<sub>2</sub> and reaction temperature, we can effectively manipulate kinetics and thermodynamics processes, and thus obtain high quality of SbSI nanowires, which is determined by Raman spectroscopy and high-resolution scanning transmission electron microscopy characterizations. The ferroelectricity in SbSI is confirmed by piezo-response force microscopy measurements and the ferroelectric transition temperature of 300 K is demonstrated by second harmonic generation. Moreover, the in-plane polarization switching can be maintained in the thin SbSI nanowires with a thickness of 20 nm. Our prepared 1D vdW ferroelectric SbSI nanowires not only enrich the vdW ferroelectric systems, but also open a new possibility for high-power energy storage nanodevices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9756 - 9763"},"PeriodicalIF":9.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信