基于三掺杂双过氧化物多功能发光的五级防伪技术

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xingru Yang, Yuhang Sheng, Linglong Zhang, Lun Yang, Fangjian Xing, Yunsong Di, Cihui Liu, Fengrui Hu, Xifeng Yang, Guofeng Yang, Yushen Liu, Zhixing Gan
{"title":"基于三掺杂双过氧化物多功能发光的五级防伪技术","authors":"Xingru Yang, Yuhang Sheng, Linglong Zhang, Lun Yang, Fangjian Xing, Yunsong Di, Cihui Liu, Fengrui Hu, Xifeng Yang, Guofeng Yang, Yushen Liu, Zhixing Gan","doi":"10.1007/s12274-024-6918-5","DOIUrl":null,"url":null,"abstract":"<p>Luminescent materials with multi-emission features are difficult to be replicated, which are highly desirable for advanced anti-counterfeiting. Here, we report the pioneering synthesis of Mn<sup>2+</sup>/Yb<sup>3+</sup>/Er<sup>3+</sup> tri-doped Cs<sub>2</sub>Ag<sub>0.8</sub>Na<sub>0.2</sub>InCl<sub>6</sub> double perovskites (MYE-DP), which exhibit photoluminescence (PL) covering from visible to near-infrared (NIR). The PL colors under excitations of 254 and 365 nm are notably different due to the changed relative emission intensities of self-trapped excitons (STEs) and Mn<sup>2+</sup> d–d transition. Moreover, under the excitation of a NIR laser, the MYE-DP exhibits upconversion (UC) emissions of Mn<sup>2+</sup> and Er<sup>3+</sup>. After ceasing the excitation, the long-lived trapped electrons can be thermally released to Mn<sup>2+</sup> and Er<sup>3+</sup> ions, resulting in both visible and NIR afterglow. Based on multi-modal emissions of the MYE-DP, we demonstrate a five-level anti-counterfeiting strategy, which significantly increases the anti-counterfeiting security. In addition, this work provides valuable insights into the energy transfer between STEs, Mn<sup>2+</sup>, Ln<sup>3+</sup>, and traps, laying a solid foundation for future development of new lead-free perovskites.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"59 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites\",\"authors\":\"Xingru Yang, Yuhang Sheng, Linglong Zhang, Lun Yang, Fangjian Xing, Yunsong Di, Cihui Liu, Fengrui Hu, Xifeng Yang, Guofeng Yang, Yushen Liu, Zhixing Gan\",\"doi\":\"10.1007/s12274-024-6918-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Luminescent materials with multi-emission features are difficult to be replicated, which are highly desirable for advanced anti-counterfeiting. Here, we report the pioneering synthesis of Mn<sup>2+</sup>/Yb<sup>3+</sup>/Er<sup>3+</sup> tri-doped Cs<sub>2</sub>Ag<sub>0.8</sub>Na<sub>0.2</sub>InCl<sub>6</sub> double perovskites (MYE-DP), which exhibit photoluminescence (PL) covering from visible to near-infrared (NIR). The PL colors under excitations of 254 and 365 nm are notably different due to the changed relative emission intensities of self-trapped excitons (STEs) and Mn<sup>2+</sup> d–d transition. Moreover, under the excitation of a NIR laser, the MYE-DP exhibits upconversion (UC) emissions of Mn<sup>2+</sup> and Er<sup>3+</sup>. After ceasing the excitation, the long-lived trapped electrons can be thermally released to Mn<sup>2+</sup> and Er<sup>3+</sup> ions, resulting in both visible and NIR afterglow. Based on multi-modal emissions of the MYE-DP, we demonstrate a five-level anti-counterfeiting strategy, which significantly increases the anti-counterfeiting security. In addition, this work provides valuable insights into the energy transfer between STEs, Mn<sup>2+</sup>, Ln<sup>3+</sup>, and traps, laying a solid foundation for future development of new lead-free perovskites.\\n</p>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12274-024-6918-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6918-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有多重发射特征的发光材料很难被复制,这对于先进的防伪技术来说是非常理想的。在此,我们首次报道了 Mn2+/Yb3+/Er3+ 三掺杂 Cs2Ag0.8Na0.2InCl6 双包晶石(MYE-DP)的合成,该材料的光致发光(PL)覆盖了从可见光到近红外(NIR)的范围。由于自俘获激子(STE)和 Mn2+ d-d 转变的相对发射强度发生了变化,在 254 纳米和 365 纳米激发下的光致发光颜色明显不同。此外,在近红外激光的激发下,MYE-DP 显示出 Mn2+ 和 Er3+ 的上转换(UC)发射。停止激发后,长寿命的被俘电子可通过热释放转化为 Mn2+ 和 Er3+ 离子,从而产生可见光和近红外余辉。基于 MYE-DP 的多模式发射,我们展示了一种五级防伪策略,大大提高了防伪安全性。此外,这项工作还对 STE、Mn2+、Ln3+ 和捕获器之间的能量传递提供了宝贵的见解,为未来新型无铅过氧化物的开发奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites

Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites

Luminescent materials with multi-emission features are difficult to be replicated, which are highly desirable for advanced anti-counterfeiting. Here, we report the pioneering synthesis of Mn2+/Yb3+/Er3+ tri-doped Cs2Ag0.8Na0.2InCl6 double perovskites (MYE-DP), which exhibit photoluminescence (PL) covering from visible to near-infrared (NIR). The PL colors under excitations of 254 and 365 nm are notably different due to the changed relative emission intensities of self-trapped excitons (STEs) and Mn2+ d–d transition. Moreover, under the excitation of a NIR laser, the MYE-DP exhibits upconversion (UC) emissions of Mn2+ and Er3+. After ceasing the excitation, the long-lived trapped electrons can be thermally released to Mn2+ and Er3+ ions, resulting in both visible and NIR afterglow. Based on multi-modal emissions of the MYE-DP, we demonstrate a five-level anti-counterfeiting strategy, which significantly increases the anti-counterfeiting security. In addition, this work provides valuable insights into the energy transfer between STEs, Mn2+, Ln3+, and traps, laying a solid foundation for future development of new lead-free perovskites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信