通过空间约束拓扑化学转化实现层控二维 Sn4P3,从而提高锂循环性能

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jianan Gu, Yongzheng Zhang, Bingbing Fan, Yanlong Lv, Yanhong Wang, Ruohan Yu, Meicheng Li
{"title":"通过空间约束拓扑化学转化实现层控二维 Sn4P3,从而提高锂循环性能","authors":"Jianan Gu,&nbsp;Yongzheng Zhang,&nbsp;Bingbing Fan,&nbsp;Yanlong Lv,&nbsp;Yanhong Wang,&nbsp;Ruohan Yu,&nbsp;Meicheng Li","doi":"10.1007/s12274-024-6915-8","DOIUrl":null,"url":null,"abstract":"<div><p>Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin 2D Sn<sub>4</sub>P<sub>3</sub> nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn<sub>4</sub>P<sub>3</sub> nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn<sub>4</sub>P<sub>3</sub> nanosheets display an exceptional initial capacity of 1088 mAh·g<sup>−1</sup>, nearing the theoretical value of 1230 mAh·g<sup>−1</sup>. Furthermore, we reveal their high-rate property as well as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn<sub>4</sub>P<sub>3</sub>, marking a significant advancement in developing high-performance energy storage systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9697 - 9703"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer-controlled 2D Sn4P3 via space-confined topochemical transformation for enhanced lithium cycling performance\",\"authors\":\"Jianan Gu,&nbsp;Yongzheng Zhang,&nbsp;Bingbing Fan,&nbsp;Yanlong Lv,&nbsp;Yanhong Wang,&nbsp;Ruohan Yu,&nbsp;Meicheng Li\",\"doi\":\"10.1007/s12274-024-6915-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin 2D Sn<sub>4</sub>P<sub>3</sub> nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn<sub>4</sub>P<sub>3</sub> nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn<sub>4</sub>P<sub>3</sub> nanosheets display an exceptional initial capacity of 1088 mAh·g<sup>−1</sup>, nearing the theoretical value of 1230 mAh·g<sup>−1</sup>. Furthermore, we reveal their high-rate property as well as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn<sub>4</sub>P<sub>3</sub>, marking a significant advancement in developing high-performance energy storage systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9697 - 9703\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6915-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6915-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

拓扑化学转化已成为制造可精确控制其成分和形态的二维(2D)材料的一种前景广阔的方法。然而,大规模合成厚度可控的超薄二维材料仍然是一个巨大的挑战。在此,我们采用一种高效的拓扑化学合成策略,利用有限的反应空间大规模合成超薄二维 Sn4P3 纳米片。在处理锡/铝箔的过程中,通过仔细调整轧制次数,我们成功地制备出了不同层厚的 Sn4P3 纳米片,实现了两层(~ 2.2 nm)的显著最小厚度。值得注意的是,双层 Sn4P3 纳米片的初始容量高达 1088 mAh-g-1,接近 1230 mAh-g-1 的理论值。此外,我们还揭示了它们的高倍率特性以及出色的循环稳定性,在超过 3000 次循环后仍能保持容量不衰减。通过精确控制层厚度并确保纳米级均匀性,我们提高了 Sn4P3 的锂循环性能,这标志着在开发高性能储能系统方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layer-controlled 2D Sn4P3 via space-confined topochemical transformation for enhanced lithium cycling performance

Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin 2D Sn4P3 nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn4P3 nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn4P3 nanosheets display an exceptional initial capacity of 1088 mAh·g−1, nearing the theoretical value of 1230 mAh·g−1. Furthermore, we reveal their high-rate property as well as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn4P3, marking a significant advancement in developing high-performance energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信