Acta Crystallographica. Section D, Structural Biology最新文献

筛选
英文 中文
Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy. 稳健而自动的光束止影异常点剔除:在半监督学习策略下将晶体学统计与现代聚类相结合。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-10-01 DOI: 10.1107/S2059798324008519
Yunyun Gao, Helen M Ginn, Andrea Thorn
{"title":"Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy.","authors":"Yunyun Gao, Helen M Ginn, Andrea Thorn","doi":"10.1107/S2059798324008519","DOIUrl":"10.1107/S2059798324008519","url":null,"abstract":"<p><p>During the automatic processing of crystallographic diffraction experiments, beamstop shadows are often unaccounted for or only partially masked. As a result of this, outlier reflection intensities are integrated, which is a known issue. Traditional statistical diagnostics have only limited effectiveness in identifying these outliers, here termed Not-Excluded-unMasked-Outliers (NEMOs). The diagnostic tool AUSPEX allows visual inspection of NEMOs, where they form a typical pattern: clusters at the low-resolution end of the AUSPEX plots of intensities or amplitudes versus resolution. To automate NEMO detection, a new algorithm was developed by combining data statistics with a density-based clustering method. This approach demonstrates a promising performance in detecting NEMOs in merged data sets without disrupting existing data-reduction pipelines. Re-refinement results indicate that excluding the identified NEMOs can effectively enhance the quality of subsequent structure-determination steps. This method offers a prospective automated means to assess the efficacy of a beamstop mask, as well as highlighting the potential of modern pattern-recognition techniques for automating outlier exclusion during data processing, facilitating future adaptation to evolving experimental strategies.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"80 Pt 10","pages":"722-732"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-mutagenesis strategies to enable structural biology crystallization platforms. 实现结构生物学结晶平台的表面突变策略。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-09-01 Epub Date: 2024-08-29 DOI: 10.1107/S2059798324007939
Martina Schaefer, Vera Pütter, André Hilpmann, Ursula Egner, Simon James Holton, Roman Christian Hillig
{"title":"Surface-mutagenesis strategies to enable structural biology crystallization platforms.","authors":"Martina Schaefer, Vera Pütter, André Hilpmann, Ursula Egner, Simon James Holton, Roman Christian Hillig","doi":"10.1107/S2059798324007939","DOIUrl":"10.1107/S2059798324007939","url":null,"abstract":"<p><p>A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS-SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"661-674"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-translational modifications in the Protein Data Bank. 蛋白质数据库中的翻译后修饰。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-09-01 Epub Date: 2024-08-29 DOI: 10.1107/S2059798324007794
Lucy C Schofield, Jordan S Dialpuri, Garib N Murshudov, Jon Agirre
{"title":"Post-translational modifications in the Protein Data Bank.","authors":"Lucy C Schofield, Jordan S Dialpuri, Garib N Murshudov, Jon Agirre","doi":"10.1107/S2059798324007794","DOIUrl":"10.1107/S2059798324007794","url":null,"abstract":"<p><p>Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"647-660"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy. 罂粟主要乳胶蛋白中配体触发的分子间二硫化物开关的结构分析。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-09-01 Epub Date: 2024-08-29 DOI: 10.1107/S2059798324007733
Samuel C Carr, Peter J Facchini, Kenneth K S Ng
{"title":"Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy.","authors":"Samuel C Carr, Peter J Facchini, Kenneth K S Ng","doi":"10.1107/S2059798324007733","DOIUrl":"10.1107/S2059798324007733","url":null,"abstract":"<p><p>Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent β-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"675-685"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of two crystal polymorphs of NowGFP reveals a new conformational state trapped by crystal packing. 对 NowGFP 的两种晶体多态性进行比较,发现了一种被晶体堆积困住的新构象状态。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI: 10.1107/S2059798324008246
Jin Kyun Kim, Hannah Jeong, Jeongwoo Seo, Seoyoon Kim, Kyung Hyun Kim, Duyoung Min, Chae Un Kim
{"title":"Comparison of two crystal polymorphs of NowGFP reveals a new conformational state trapped by crystal packing.","authors":"Jin Kyun Kim, Hannah Jeong, Jeongwoo Seo, Seoyoon Kim, Kyung Hyun Kim, Duyoung Min, Chae Un Kim","doi":"10.1107/S2059798324008246","DOIUrl":"10.1107/S2059798324008246","url":null,"abstract":"<p><p>Crystal polymorphism serves as a strategy to study the conformational flexibility of proteins. However, the relationship between protein crystal packing and protein conformation often remains elusive. In this study, two distinct crystal forms of a green fluorescent protein variant, NowGFP, are compared: a previously identified monoclinic form (space group C2) and a newly discovered orthorhombic form (space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>). Comparative analysis reveals that both crystal forms exhibit nearly identical linear assemblies of NowGFP molecules interconnected through similar crystal contacts. However, a notable difference lies in the stacking of these assemblies: parallel in the monoclinic form and perpendicular in the orthorhombic form. This distinct mode of stacking leads to different crystal contacts and induces structural alteration in one of the two molecules within the asymmetric unit of the orthorhombic crystal form. This new conformational state captured by orthorhombic crystal packing exhibits two unique features: a conformational shift of the β-barrel scaffold and a restriction of pH-dependent shifts of the key residue Lys61, which is crucial for the pH-dependent spectral shift of this protein. These findings demonstrate a clear connection between crystal packing and alternative conformational states of proteins, providing insights into how structural variations influence the function of fluorescent proteins.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"686-698"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protonation of histidine rings using quantum-mechanical methods. 利用量子力学方法研究组氨酸环的质子化。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-08-01 Epub Date: 2024-07-25 DOI: 10.1107/S2059798324006314
Nigel W Moriarty, Jonathan Moussa, Paul D Adams
{"title":"Protonation of histidine rings using quantum-mechanical methods.","authors":"Nigel W Moriarty, Jonathan Moussa, Paul D Adams","doi":"10.1107/S2059798324006314","DOIUrl":"10.1107/S2059798324006314","url":null,"abstract":"<p><p>Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely protonation state.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"639-646"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them. 对结核分枝杆菌三官能团酶的晶体片段结合研究表明,在其活性位点上存在酰基-CoA 底物尾部的结合口袋,它们之间可能存在底物通道。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-08-01 Epub Date: 2024-07-16 DOI: 10.1107/S2059798324006557
Subhadra Dalwani, Alexander Metz, Franziska U Huschmann, Manfred S Weiss, Rik K Wierenga, Rajaram Venkatesan
{"title":"Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them.","authors":"Subhadra Dalwani, Alexander Metz, Franziska U Huschmann, Manfred S Weiss, Rik K Wierenga, Rajaram Venkatesan","doi":"10.1107/S2059798324006557","DOIUrl":"10.1107/S2059798324006557","url":null,"abstract":"<p><p>The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α<sub>2</sub>β<sub>2</sub> tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE-fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"605-619"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A snapshot love story: what serial crystallography has done and will do for us. 一个快照爱情故事:系列晶体学已经和将要为我们做什么。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-08-01 Epub Date: 2024-07-10 DOI: 10.1107/S2059798324005588
Alessandra Henkel, Dominik Oberthür
{"title":"A snapshot love story: what serial crystallography has done and will do for us.","authors":"Alessandra Henkel, Dominik Oberthür","doi":"10.1107/S2059798324005588","DOIUrl":"10.1107/S2059798324005588","url":null,"abstract":"<p><p>Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"563-579"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap. 醋兰氮杆菌 Shethna 蛋白 II(FeSII)的晶体结构表明存在结构域互换。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-08-01 Epub Date: 2024-07-10 DOI: 10.1107/S2059798324005928
Burak V Kabasakal, Ciaran R McFarlane, Charles A R Cotton, Anna Schmidt, Andrea Kung, Lucas Lieber, James W Murray
{"title":"The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap.","authors":"Burak V Kabasakal, Ciaran R McFarlane, Charles A R Cotton, Anna Schmidt, Andrea Kung, Lucas Lieber, James W Murray","doi":"10.1107/S2059798324005928","DOIUrl":"10.1107/S2059798324005928","url":null,"abstract":"<p><p>The Azotobacter vinelandii FeSII protein forms an oxygen-resistant complex with the nitrogenase MoFe and Fe proteins. FeSII is an adrenodoxin-type ferredoxin that forms a dimer in solution. Previously, the crystal structure was solved [Schlesier et al. (2016), J. Am. Chem. Soc. 138, 239-247] with five copies in the asymmetric unit. One copy is a normal adrenodoxin domain that forms a dimer with its crystallographic symmetry mate. The other four copies are in an `open' conformation with a loop flipped out exposing the 2Fe-2S cluster. The open and closed conformations were interpreted as oxidized and reduced, respectively, and the large conformational change in the open configuration allowed binding to nitrogenase. Here, the structure of FeSII was independently solved in the same crystal form. The positioning of the atoms in the unit cell is similar to the earlier report. However, the interpretation of the structure is different. The `open' conformation is interpreted as the product of a crystallization-induced domain swap. The 2Fe-2S cluster is not exposed to solvent, but in the crystal its interacting helix is replaced by the same helix residues from a crystal symmetry mate. The domain swap is complicated, as it is unusual in being in the middle of the protein rather than at a terminus, and it creates arrangements of molecules that can be interpreted in multiple ways. It is also cautioned that crystal structures should be interpreted in terms of the contents of the entire crystal rather than of one asymmetric unit.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"599-604"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals. Cryo2RT:利用低温冷却晶体进行室温大分子晶体学研究的高通量方法。
IF 2.6 4区 生物学
Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-08-01 Epub Date: 2024-07-25 DOI: 10.1107/S2059798324006697
Chia Ying Huang, Sylvain Aumonier, Vincent Olieric, Meitian Wang
{"title":"Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals.","authors":"Chia Ying Huang, Sylvain Aumonier, Vincent Olieric, Meitian Wang","doi":"10.1107/S2059798324006697","DOIUrl":"10.1107/S2059798324006697","url":null,"abstract":"<p><p>Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CL<sup>pro</sup>, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"620-628"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信