The ManifoldEM method for cryo-EM: a step-by-step breakdown accompanied by a modern Python implementation.

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Anupam Anand Ojha, Robert Blackwell, Eduardo R Cruz-Chú, Raison Dsouza, Miro A Astore, Peter Schwander, Sonya M Hanson
{"title":"The ManifoldEM method for cryo-EM: a step-by-step breakdown accompanied by a modern Python implementation.","authors":"Anupam Anand Ojha, Robert Blackwell, Eduardo R Cruz-Chú, Raison Dsouza, Miro A Astore, Peter Schwander, Sonya M Hanson","doi":"10.1107/S2059798325001469","DOIUrl":null,"url":null,"abstract":"<p><p>Resolving continuous conformational heterogeneity in single-particle cryo-electron microscopy (cryo-EM) is a field in which new methods are now emerging regularly. Methods range from traditional statistical techniques to state-of-the-art neural network approaches. Such ongoing efforts continue to enhance the ability to explore and understand the continuous conformational variations in cryo-EM data. One of the first methods was the manifold embedding approach or ManifoldEM. However, comparing it with more recent methods has been challenging due to software availability and usability issues. In this work, we introduce a modern Python implementation that is user-friendly, orders of magnitude faster than its previous versions and designed with a developer-ready environment. This implementation allows a more thorough evaluation of the strengths and limitations of methods addressing continuous conformational heterogeneity in cryo-EM, paving the way for further community-driven improvements.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"89-104"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325001469","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Resolving continuous conformational heterogeneity in single-particle cryo-electron microscopy (cryo-EM) is a field in which new methods are now emerging regularly. Methods range from traditional statistical techniques to state-of-the-art neural network approaches. Such ongoing efforts continue to enhance the ability to explore and understand the continuous conformational variations in cryo-EM data. One of the first methods was the manifold embedding approach or ManifoldEM. However, comparing it with more recent methods has been challenging due to software availability and usability issues. In this work, we introduce a modern Python implementation that is user-friendly, orders of magnitude faster than its previous versions and designed with a developer-ready environment. This implementation allows a more thorough evaluation of the strengths and limitations of methods addressing continuous conformational heterogeneity in cryo-EM, paving the way for further community-driven improvements.

冷冻电镜(cryo-EM)的manioldem方法:一步一步的分解,并附有现代Python实现。
在单粒子低温电子显微镜(cryo-EM)中解决连续构象不均匀性是一个新方法不断出现的领域。方法范围从传统的统计技术到最先进的神经网络方法。这种持续的努力将继续增强探索和理解低温电镜数据中连续构象变化的能力。最初的方法之一是流形嵌入方法或流形dem。然而,由于软件可用性和可用性问题,将其与最近的方法进行比较是具有挑战性的。在这项工作中,我们介绍了一个现代的Python实现,它是用户友好的,比以前的版本快了几个数量级,并且设计了一个开发人员就绪的环境。这一实现可以更彻底地评估低温电镜中连续构象异质性方法的优势和局限性,为进一步的社区驱动改进铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Crystallographica. Section D, Structural Biology
Acta Crystallographica. Section D, Structural Biology BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
4.50
自引率
13.60%
发文量
216
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信