Anupam Anand Ojha, Robert Blackwell, Eduardo R Cruz-Chú, Raison Dsouza, Miro A Astore, Peter Schwander, Sonya M Hanson
{"title":"The ManifoldEM method for cryo-EM: a step-by-step breakdown accompanied by a modern Python implementation.","authors":"Anupam Anand Ojha, Robert Blackwell, Eduardo R Cruz-Chú, Raison Dsouza, Miro A Astore, Peter Schwander, Sonya M Hanson","doi":"10.1107/S2059798325001469","DOIUrl":null,"url":null,"abstract":"<p><p>Resolving continuous conformational heterogeneity in single-particle cryo-electron microscopy (cryo-EM) is a field in which new methods are now emerging regularly. Methods range from traditional statistical techniques to state-of-the-art neural network approaches. Such ongoing efforts continue to enhance the ability to explore and understand the continuous conformational variations in cryo-EM data. One of the first methods was the manifold embedding approach or ManifoldEM. However, comparing it with more recent methods has been challenging due to software availability and usability issues. In this work, we introduce a modern Python implementation that is user-friendly, orders of magnitude faster than its previous versions and designed with a developer-ready environment. This implementation allows a more thorough evaluation of the strengths and limitations of methods addressing continuous conformational heterogeneity in cryo-EM, paving the way for further community-driven improvements.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"89-104"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325001469","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Resolving continuous conformational heterogeneity in single-particle cryo-electron microscopy (cryo-EM) is a field in which new methods are now emerging regularly. Methods range from traditional statistical techniques to state-of-the-art neural network approaches. Such ongoing efforts continue to enhance the ability to explore and understand the continuous conformational variations in cryo-EM data. One of the first methods was the manifold embedding approach or ManifoldEM. However, comparing it with more recent methods has been challenging due to software availability and usability issues. In this work, we introduce a modern Python implementation that is user-friendly, orders of magnitude faster than its previous versions and designed with a developer-ready environment. This implementation allows a more thorough evaluation of the strengths and limitations of methods addressing continuous conformational heterogeneity in cryo-EM, paving the way for further community-driven improvements.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.