{"title":"Reconsideration of the P-clusters in VFe proteins using the bond-valence method: towards their electron transfer and protonation.","authors":"Zhen Lang Xie, Wan Ting Jin, Zhao Hui Zhou","doi":"10.1107/S2059798325000415","DOIUrl":null,"url":null,"abstract":"<p><p>P-clusters have been statistically analysed using the bond-valence sum (BVS) method together with weighting schemes. The crystallographic data come from the VFe proteins deposited in the Protein Data Bank (PDB) with high resolutions of better than 1.35 Å. Calculations show that the formal oxidation state of a P<sup>1+</sup> cluster can be assigned as 2Fe<sup>3+</sup>6Fe<sup>2+</sup> with high electron delocalization, giving the same oxidation state as that of P<sup>N</sup> clusters in VFe proteins. Further comprehensive comparisons of the bond distances suggest that the hydroxyl groups of the β-153 serine residues in P<sup>1+</sup> and P<sup>N</sup> clusters are in the protonated state, where the Fe6 atoms have the same oxidation state as Fe<sup>2+</sup>. During the transition from P<sup>N</sup> to P<sup>1+</sup>, cleavage of the Fe6-S1 bond is accompanied by the formation of a weak coordination between the Fe6 atom and the hydroxyl group of the β-153 serine residue in the P<sup>1+</sup> cluster of the VFe protein. Similarly, oxidation of P<sup>N</sup> to P<sup>1+</sup>/P<sup>2+</sup> clusters corresponds to the coordination of Fe6(II) by the hydroxyl group of the β-188 serine residue and of Fe5(II) by the peptide amine group of the α-88 cysteine residue in the MoFe protein of Azotobacter vinelandiis without electron and proton transfers.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"77-84"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325000415","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
P-clusters have been statistically analysed using the bond-valence sum (BVS) method together with weighting schemes. The crystallographic data come from the VFe proteins deposited in the Protein Data Bank (PDB) with high resolutions of better than 1.35 Å. Calculations show that the formal oxidation state of a P1+ cluster can be assigned as 2Fe3+6Fe2+ with high electron delocalization, giving the same oxidation state as that of PN clusters in VFe proteins. Further comprehensive comparisons of the bond distances suggest that the hydroxyl groups of the β-153 serine residues in P1+ and PN clusters are in the protonated state, where the Fe6 atoms have the same oxidation state as Fe2+. During the transition from PN to P1+, cleavage of the Fe6-S1 bond is accompanied by the formation of a weak coordination between the Fe6 atom and the hydroxyl group of the β-153 serine residue in the P1+ cluster of the VFe protein. Similarly, oxidation of PN to P1+/P2+ clusters corresponds to the coordination of Fe6(II) by the hydroxyl group of the β-188 serine residue and of Fe5(II) by the peptide amine group of the α-88 cysteine residue in the MoFe protein of Azotobacter vinelandiis without electron and proton transfers.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.