Micro and Nano Systems Letters最新文献

筛选
英文 中文
Efficacy in degradation of carcinogenic pollutant sulforhodamine B by green synthesized silver nanoparticles 绿色合成纳米银对致癌物硫代丹B的降解效果
IF 4.7
Micro and Nano Systems Letters Pub Date : 2021-11-22 DOI: 10.1186/s40486-021-00138-z
Ramakrishnan Jayakrishnan, Anju Joseph, Vinoy Thomas
{"title":"Efficacy in degradation of carcinogenic pollutant sulforhodamine B by green synthesized silver nanoparticles","authors":"Ramakrishnan Jayakrishnan,&nbsp;Anju Joseph,&nbsp;Vinoy Thomas","doi":"10.1186/s40486-021-00138-z","DOIUrl":"10.1186/s40486-021-00138-z","url":null,"abstract":"<div><p>Colloidal Silver nano-particles were grown at room temperature using leaf extract of <i>Ocimum tenuiflorum</i>. The silver nanoparticles suspended in the solution were found to be stable for over a period of 2 months. Structural, optical and photo catalytic behavior of the suspended silver (Ag) nano-particles (NPs) was characterized. From TEM analysis the size of the silver nanoparticles was estimated to be 25–30 nm. Our findings suggest that the ratio between the molarity of AgNO3 and the volume of leaf extract does not have any role in controlling the size of the Ag nano-particles. These green synthesized Ag nano-particles exhibit degradation of the carcinogenic organic pollutant sulforhodamine B in absence of light.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00138-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stereoscopic facial imaging for pain assessment using rotational offset microlens arrays based structured illumination 基于结构照明的旋转偏置微透镜阵列用于疼痛评估的立体面部成像
IF 4.7
Micro and Nano Systems Letters Pub Date : 2021-11-15 DOI: 10.1186/s40486-021-00139-y
Jae-Myeong Kwon, Sung-Pyo Yang, Ki-Hun Jeong
{"title":"Stereoscopic facial imaging for pain assessment using rotational offset microlens arrays based structured illumination","authors":"Jae-Myeong Kwon,&nbsp;Sung-Pyo Yang,&nbsp;Ki-Hun Jeong","doi":"10.1186/s40486-021-00139-y","DOIUrl":"10.1186/s40486-021-00139-y","url":null,"abstract":"<div><p>Conventional pain assessment methods such as patients’ self-reporting restrict the possibility of easy pain monitoring while pain serves as an important role in clinical practice. Here we report a pain assessment method via 3D face reading camera assisted by dot pattern illumination. The face reading camera module (FRCM) consists of a stereo camera and a dot projector, which allow the quantitative measurement of facial expression changes without human subjective judgement. The rotational offset microlens arrays (roMLAs) in the dot projector form a uniform dense dot pattern on a human face. The dot projection facilitates evaluating three-dimensional change of facial expression by improving 3D reconstruction results of non-textured facial surfaces. In addition, the FRCM provides consistent pain rating from 3D data, regardless of head movement. This pain assessment method can provide a new guideline for precise, real-time, and continuous pain monitoring.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00139-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A highly smart MEMS acetone gas sensors in array for diet-monitoring applications 一种用于饮食监测应用的高智能MEMS丙酮气体传感器阵列
IF 4.7
Micro and Nano Systems Letters Pub Date : 2021-10-30 DOI: 10.1186/s40486-021-00136-1
Jae Eun Lee, Chan Kyu Lim, Hyunjoon Song, Sung-Yool Choi, Dae-Sik Lee
{"title":"A highly smart MEMS acetone gas sensors in array for diet-monitoring applications","authors":"Jae Eun Lee,&nbsp;Chan Kyu Lim,&nbsp;Hyunjoon Song,&nbsp;Sung-Yool Choi,&nbsp;Dae-Sik Lee","doi":"10.1186/s40486-021-00136-1","DOIUrl":"10.1186/s40486-021-00136-1","url":null,"abstract":"<div><p>In the present work, gas sensor arrays consisted of four different sensing materials based on CuO and their depositions on the MEMS microheaters were designed, fabricated and characterized. The sensor array is consisted with CuO, CuO with Pt NPs, ZnO–CuO and ZnO–CuO with Au NPs and their gas sensing properties are characterized for detection of exhaled breath-related VOCs. Through MEMS microheaters, power consumption is considered for application to healthcare devices which requires ultrasensitive acetone gas sensitivity. Also, using the principal component analysis, it enables to discriminate acetone gas, a biomarker for fat burning during diet, with other VOCs gases. The device would be applicable for on-site diet monitoring in the field of mobile healthcare.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00136-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of low temperature on electrophysiology and mechanophysiology of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) 低温对人类诱导多能干细胞衍生心肌细胞(hiPSC-CMs)电生理学和机械生理学的影响
IF 4.7
Micro and Nano Systems Letters Pub Date : 2021-10-28 DOI: 10.1186/s40486-021-00135-2
Pooja P. Kanade, Nomin-Erdene Oyunbaatar, Dong-Weon Lee
{"title":"Effects of low temperature on electrophysiology and mechanophysiology of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)","authors":"Pooja P. Kanade,&nbsp;Nomin-Erdene Oyunbaatar,&nbsp;Dong-Weon Lee","doi":"10.1186/s40486-021-00135-2","DOIUrl":"10.1186/s40486-021-00135-2","url":null,"abstract":"<div><p>Studies related to low temperature and their effect on cardiomyocytes are essential as hypothermia—like situations have been known to induce arrhythmia or ventricular fibrillation. Till date, several studies have been carried out on animals and their electrophysiological responses have been studied in the form of action potential. However, for a complete assessment of the effect of low temperature, mechanophysiological changes along with electrophysiological changes need to be investigated, at the tissue level. In this study, the effect of culture temperature on cell growth has been studied by measuring the field potential and contractility of human induced pluripotent stem cell-derived cardiomyocytes. This study has the potential to further improve the understanding of low temperature on human cells.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00135-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65886817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of citrate buffer and flash heating in enhancing the sensitivity of ratiometric genosensing of Hepatitis C virus using plasmonic gold nanoparticles 柠檬酸缓冲液和闪蒸加热对提高等离子体金纳米颗粒比例基因感测丙型肝炎病毒敏感性的影响
IF 4.7
Micro and Nano Systems Letters Pub Date : 2021-10-26 DOI: 10.1186/s40486-021-00134-3
Hrishikesh Shashi Prakash, Pranay Amruth Maroju, Naga Sai Sriteja Boppudi, Aniket Balapure, Ramakrishnan Ganesan, Jayati Ray Dutta
{"title":"Influence of citrate buffer and flash heating in enhancing the sensitivity of ratiometric genosensing of Hepatitis C virus using plasmonic gold nanoparticles","authors":"Hrishikesh Shashi Prakash,&nbsp;Pranay Amruth Maroju,&nbsp;Naga Sai Sriteja Boppudi,&nbsp;Aniket Balapure,&nbsp;Ramakrishnan Ganesan,&nbsp;Jayati Ray Dutta","doi":"10.1186/s40486-021-00134-3","DOIUrl":"10.1186/s40486-021-00134-3","url":null,"abstract":"<div><p>Gold nanoparticles (Au NPs) based technology has been shown to possess enormous potential in the viral nucleic acid diagnosis. Despite significant advancement in this domain, the existing literature reveals the diversity in the conditions employed for hybridization and tagging of thiolated nucleic acid probes over the Au NPs. Here we employ the probe sequence derived from the Hepatitis C virus to identify the optimal hybridization and thiol-Au NP tagging conditions. In a typical polymerase chain reaction, the probes are initially subjected to flash heating at elevated temperatures to obtain efficient annealing. Motivated by this, in the current study, the hybridization between the target and the antisense oligonucleotide (ASO) has been studied at 65 °C with and without employing flash heating at temperatures from 75 to 95 °C. Besides, the efficiency of the thiolated ASO’s tagging over the Au NPs with and without citrate buffer has been explored. The study has revealed the beneficial role of flash heating at 95 °C for efficient hybridization and the presence of citrate buffer for rapid and effective thiol tagging over the Au NPs. The combinatorial effect of these conditions has been found to be advantageous in enhancing the sensitivity of ratiometric genosensing using Au NPs.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00134-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous preparation of bicelles using hydrodynamic focusing method for bicelle to vesicle transition 用水动力聚焦法连续制备小囊体,使小囊体向囊泡过渡
IF 4.7
Micro and Nano Systems Letters Pub Date : 2021-10-25 DOI: 10.1186/s40486-021-00133-4
SungHak Choi, BongSu Kang, Toshinori Shimanouchi, Keesung Kim, HoSup Jung
{"title":"Continuous preparation of bicelles using hydrodynamic focusing method for bicelle to vesicle transition","authors":"SungHak Choi,&nbsp;BongSu Kang,&nbsp;Toshinori Shimanouchi,&nbsp;Keesung Kim,&nbsp;HoSup Jung","doi":"10.1186/s40486-021-00133-4","DOIUrl":"10.1186/s40486-021-00133-4","url":null,"abstract":"<div><p>Bicelle is one of the most stable phospholipid assemblies, which has tremendous applications in the research areas for drug delivery or structural studies of membrane proteins owing to its bio-membrane mimicking characteristics and high thermal stability. However, the conventional preparation method for bicelle demands complicated manufacturing processes and a long time so that the continuous synthesis method of bicelle using microfluidic chip has been playing an important role to expand its feasibility. We verified the general availability of hydrodynamic focusing method with microfluidic chip for bicelle synthesis using various kinds of lipids which have a phase transition temperature ranged from − 2 to 41 °C. Bicelle can be formed only when the inside temperature of microfluidic chip was over the phase transition temperature. Moreover, the concentration condition for bicelle formation varied depending on the lipids. Furthermore, the transition process characteristics from bicelle to vesicle were analyzed by effective q-value, mixing time and dilution condition. We verified that the size of transition vesicles was controlled according to the effective q-value, mixing time, and temperature.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00133-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper micromesh-based lightweight transparent conductor with short response time for wearable heaters 用于可穿戴式加热器的基于铜微网的轻质透明导体,响应时间短
IF 4.7
Micro and Nano Systems Letters Pub Date : 2021-10-25 DOI: 10.1186/s40486-021-00132-5
Han-Jung Kim, Yoonkap Kim
{"title":"Copper micromesh-based lightweight transparent conductor with short response time for wearable heaters","authors":"Han-Jung Kim,&nbsp;Yoonkap Kim","doi":"10.1186/s40486-021-00132-5","DOIUrl":"10.1186/s40486-021-00132-5","url":null,"abstract":"<div><p>Thickness-controlled transparent conducting films (TCFs) were fabricated by transfer printing a 100 nm thick Cu micromesh structure onto poly(vinyl alcohol) (PVA) substrates of different thicknesses (~ 50, ~ 80, and ~ 120 μm) to develop a lightweight transparent wearable heater with short response time. The Cu mesh-based TCF fabricated on a ~ 50 µm thick PVA substrate exhibited excellent optical and electrical properties with a light transmittance of 86.7% at 550 nm, sheet resistance of ~ 10.8 Ω/sq, and figure-of-merit of approximately 236, which are comparable to commercial indium tin oxide film-based transparent conductors. The remarkable flexibility of the Cu mesh-based TCF was demonstrated through cyclic mechanical bending tests. In addition, the Cu mesh-based TCF with ~ 50 μm thick PVA substrate demonstrated a fast Joule heating performance with a thermal response time of ~ 18.0 s and a ramping rate of ~ 3.0 ℃/s under a driving voltage of 2.5 V. Lastly, the reliable response and recovery characteristics of the Cu mesh/PVA film-based transparent heater were confirmed through the cyclic power test. We believe that the results of this study is useful in the development of flexible transparent heaters, including lightweight deicing/defogging films, wearable sensors/actuators, and medical thermotherapy pads.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00132-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple ratiometric nanothermometry using semiconductor BiFeO3 nanowires and quantitative validation of thermal sensitivity 使用半导体BiFeO3纳米线的多比率纳米测温法和热敏性的定量验证
IF 3.6
Micro and Nano Systems Letters Pub Date : 2021-10-14 DOI: 10.36227/techrxiv.16780459
K. Prashanthi, K. K. Krishna Mohan, Ž. Antić, K. Ahadi, M. Dramićanin
{"title":"Multiple ratiometric nanothermometry using semiconductor BiFeO3 nanowires and quantitative validation of thermal sensitivity","authors":"K. Prashanthi, K. K. Krishna Mohan, Ž. Antić, K. Ahadi, M. Dramićanin","doi":"10.36227/techrxiv.16780459","DOIUrl":"https://doi.org/10.36227/techrxiv.16780459","url":null,"abstract":"Here, we report a very sensitive, non-contact, ratio-metric, and robust luminescence-based temperature sensing using a combination of conventional photoluminescence (PL) and negative thermal quenching (NTQ) mechanisms of semiconductor BiFeO 3 (BFO) nanowires. Using this approach, we have demonstrated the absolute thermal sensitivity of ~ 10 mK −1 over the 300–438 K temperature range and the relative sensitivity of 0.75% K −1 at 300 K. Further, we have validated thermal sensitivity of BFO nanowires quantitatively using linear regression and analytical hierarchy process (AHP) and found close match with the experimental results. These results indicated that BFO nanowires are excellent candidates for developing high‐performance luminescence-based temperature sensors. Graphical abstract","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45143150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity 绿色合成植物基纳米银:抗癌和抗病毒活性的治疗前景
IF 3.6
Micro and Nano Systems Letters Pub Date : 2021-05-03 DOI: 10.1186/s40486-021-00131-6
Nancy Jain, Priyanshu Jain, Devyani Rajput, Umesh Kumar Patil
{"title":"Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity","authors":"Nancy Jain,&nbsp;Priyanshu Jain,&nbsp;Devyani Rajput,&nbsp;Umesh Kumar Patil","doi":"10.1186/s40486-021-00131-6","DOIUrl":"https://doi.org/10.1186/s40486-021-00131-6","url":null,"abstract":"<p>Nanotechnology holds an emerging domain of medical science as it can be utilized virtually in all areas. Phyto-constituents are valuable and encouraging candidates for synthesizing green silver nanoparticles (AgNPs) which possess great potentials toward chronic diseases. This review gives an overview of the Green approach of AgNPs synthesis and its characterization. The present review further explores the potentials of Phyto-based AgNPs toward anticancer and antiviral activity including its probable mechanism of action. Green synthesized AgNPs prepared by numerous medicinal plants extract are critically reviewed for cancer and viral infection. Thus, this article mainly highlights green synthesized Phyto-based AgNPs with their potential applications for cancer and viral infection including mechanism of action and therapeutic future prospective in a single window. </p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-021-00131-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4479604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 62
High speed silicon wet anisotropic etching for applications in bulk micromachining: a review 高速硅湿各向异性刻蚀在体微加工中的应用综述
IF 3.6
Micro and Nano Systems Letters Pub Date : 2021-02-22 DOI: 10.1186/s40486-021-00129-0
Prem Pal, Veerla Swarnalatha, Avvaru Venkata Narasimha Rao, Ashok Kumar Pandey, Hiroshi Tanaka, Kazuo Sato
{"title":"High speed silicon wet anisotropic etching for applications in bulk micromachining: a review","authors":"Prem Pal,&nbsp;Veerla Swarnalatha,&nbsp;Avvaru Venkata Narasimha Rao,&nbsp;Ashok Kumar Pandey,&nbsp;Hiroshi Tanaka,&nbsp;Kazuo Sato","doi":"10.1186/s40486-021-00129-0","DOIUrl":"https://doi.org/10.1186/s40486-021-00129-0","url":null,"abstract":"<p>Wet anisotropic etching is extensively employed in silicon bulk micromachining to fabricate microstructures for various applications in the field of microelectromechanical systems (MEMS). In addition, it is most widely used for surface texturing to minimize the reflectance of light to improve the efficiency of crystalline silicon solar cells. In wet bulk micromachining, the etch rate is a major factor that affects the throughput. Slower etch rate increases the fabrication time and therefore is of great concern in MEMS industry where wet anisotropic etching is employed to perform the silicon bulk micromachining, especially to fabricate deep cavities and freestanding microstructures by removal of underneath material through undercutting process. Several methods have been proposed to increase the etch rate of silicon in wet anisotropic etchants either by physical means (e.g. agitation, microwave irradiation) or chemically by incorporation of additives. The ultrasonic agitation during etching and microwave irradiation on the etchants increase the etch rate. However, ultrasonic method may rupture the fragile structures and microwave irradiation causes irradiation damage to the structures. Another method is to increase the etching temperature towards the boiling point of the etchant. The etching characteristics of pure potassium hydroxide solution (KOH) is studied near the boiling point of KOH, while surfactant added tetramethylammonium hydroxide (TMAH) is investigated at higher temperature to increase the etch rate. Both these studies have shown a potential way of increasing the etch rate by elevating the temperature of the etchants to its boiling point, which is a function of concentration of etch solution. The effect of various kinds of additives on the etch rate of silicon is investigated in TMAH and KOH. In this paper, the additives which improve the etch rate have been discussed. Recently the effect of hydroxylamine (NH<sub>2</sub>OH) on the etching characteristics of TMAH and KOH is investigated in detail. The concentration of NH<sub>2</sub>OH in TMAH/KOH is varied to optimize the etchant composition to obtain improved etching characteristics especially the etch rate and undercutting which are important parameters for increasing throughput. In this article, different methods explored to improve the etch rate of silicon have been discussed so that the researchers/scientists/engineers can get the details of these methods in a single reference.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5155008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信