Metals and Materials International最新文献

筛选
英文 中文
Effect of Microstructural Changes by Friction Stir Processing on the Clad-to-Core Interfacial Strength of Thin Aluminum-Clad Aluminum Sheets 摩擦搅拌加工的微观结构变化对薄铝板包层与芯材界面强度的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-31 DOI: 10.1007/s12540-024-01776-9
Kun Gao, Guiqi Liu, Sung-Tae Hong, Soumyabrata Basak
{"title":"Effect of Microstructural Changes by Friction Stir Processing on the Clad-to-Core Interfacial Strength of Thin Aluminum-Clad Aluminum Sheets","authors":"Kun Gao, Guiqi Liu, Sung-Tae Hong, Soumyabrata Basak","doi":"10.1007/s12540-024-01776-9","DOIUrl":"https://doi.org/10.1007/s12540-024-01776-9","url":null,"abstract":"<p>The present study successfully utilizes friction stir processing (FSP) as a surface engineering tool on an AA4343-clad AA3003 sheet to improve the interfacial strength through microstructural homogenization. Compared to the base material condition, electron back-scattered diffraction analysis after FSP reveals a considerable reduction in grain morphological disparity between the clad layer and the core due to the occurrence of grain refinement by continuous dynamic recrystallization. Scanning electron microscopy (SEM) analysis reveals various Si-induced precipitations, including Al (Mn, Fe) Si, within the stir zone due to the diffusion of Si from the clad layer to the core during FSP. The influence of microstructural changes on improving the mechanical properties of the bi-layer clad sheet is also examined. The surface microhardness values of the clad (~ 28.7 Hv) and core (~ 35.5 Hv) for the base material condition are found to be improved to ~ 34.7 Hv and 38.5 Hv, respectively, after FSP. Besides, the overall strength of the FSPed clad sheet increases by ~ 45% compared to the base material conditions. The microstructural homogenization and Si-induced precipitates act together to strengthen the interface in the clad material system. SEM images on the fractured surfaces of the tensile specimens reveal delamination between the AA4343 (clad layer) and AA3003 (core) for the base material condition, which disappears after FSP.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"59 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation Between Microstructural Features and Corrosion Resistance in a Fine-Grained Severely Deformed Biodegradable Mg‒4Zn Alloy 细粒度严重变形可生物降解镁-4Zn 合金的微观结构特征与耐腐蚀性之间的相关性
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-30 DOI: 10.1007/s12540-024-01789-4
M. Sabbaghian, R. Mahmudi, K. S. Shin
{"title":"Correlation Between Microstructural Features and Corrosion Resistance in a Fine-Grained Severely Deformed Biodegradable Mg‒4Zn Alloy","authors":"M. Sabbaghian, R. Mahmudi, K. S. Shin","doi":"10.1007/s12540-024-01789-4","DOIUrl":"https://doi.org/10.1007/s12540-024-01789-4","url":null,"abstract":"<p>The corrosion resistance of a biodegradable Mg‒4Zn alloy, severely deformed by equal channel angular pressing (ECAP) and simple shear extrusion (SSE), was investigated and formulated in terms of different microstructural features. The grain size of the extruded alloy decreased after ECAP and SSE. The finest grain size of 3.6 μm was obtained after 4 SSE passes. Second phase particles were refined and distributed more uniformly in the SSE-processed conditions. Electron back-scattered diffraction examinations revealed that 4 ECAP passes transforms the fiber texture of the extruded material to a shear-type texture component. However, a semi-fiber component, with the (0001) planes parallel to the pressing direction, was observed in SSE-processed samples. The corrosion resistance, analyzed via electrochemical testing in a phosphate buffered saline (PBS), was improved by ECAP and SSE processing. Despite the larger grain size of the ECAP-processed conditions, they showed higher corrosion resistances (<i>R</i>p) than those of the SSE-processed ones. This was attributed to the higher density of basal planes at the surface, vaster dynamically recrystallized regions, larger high-angle grain boundary fractions, lower second phase volume fractions, and more homogeneous grain structures. These microstructural features were quantified and incorporated into a model to formulate the corrosion resistance of the alloy.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"2 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Different Microstructure on Strengthening Mechanism and Hardening Mechanism in Peak-Aged Mg–14Gd–0.2Sn Alloy 不同显微组织对峰值时效 Mg-14Gd-0.2Sn 合金强化机制和硬化机制的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-30 DOI: 10.1007/s12540-024-01792-9
Boshu Liu, Kaiqiang Cao, Rongguang Li, Yuehong Zhang, Hang Zhang, Shanshan Li, Sha Sha
{"title":"Effects of Different Microstructure on Strengthening Mechanism and Hardening Mechanism in Peak-Aged Mg–14Gd–0.2Sn Alloy","authors":"Boshu Liu, Kaiqiang Cao, Rongguang Li, Yuehong Zhang, Hang Zhang, Shanshan Li, Sha Sha","doi":"10.1007/s12540-024-01792-9","DOIUrl":"https://doi.org/10.1007/s12540-024-01792-9","url":null,"abstract":"<p>A bimodal-grained microstructure is formed in the Mg–14Gd–0.2Sn alloy extruded with a small extrusion ratio of 7 (E7 alloy), containing a large number of fine dynamic recrystallized (DRXed) grains with an average size of ~ 1.11 μm. In comparison, a much higher proportion of DRXed microstructure (~ 90%) with a coarser grain size of ~ 5.85 μm is formed in the alloy extruded with a large ratio of 16 (E16 alloy). The lower actual temperature during extrusion of the E7 alloy increases the supersaturation degree of α-Mg solid solution matrix, and induces a higher volume fraction of dynamic precipitates (β-Mg<sub>5</sub>Gd) compared with the E16 alloy. After aging, the E7-A alloy exhibits a stronger precipitation strengthening effect with a peak-aged yield strength (YS) of 405 MPa. The YS of the E7-A alloy presents a remarkable improvement of 88 MPa compared with that of the E16-A alloy, which is mainly related to finer DRXed grains and stronger texture. In contrast, the hardness increment of the E16-A alloy is higher than that of the E7-A alloy, and the peak hardness of the E16-A alloy is comparable to that of the E7-A alloy. Although the high density of precipitates in the E16-A alloy contributes to a strong aging hardening response, the weaker precipitation strengthening effect of the E16-A alloy is mainly attributed to the activation of twinning in coarser grains with a weaker texture.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"44 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving High-Temperature Wear Resistance of Ti–6Al–4V alloy via Si–B–Y Co-Deposited Coatings 通过 Si-B-Y 共沉积涂层提高 Ti-6Al-4V 合金的高温耐磨性
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-30 DOI: 10.1007/s12540-024-01787-6
Xuan Li, Xu-yi Zhang, Zhi-zhang Liu, Li-jing Zhang, Lei Luo, Sheng Lai
{"title":"Improving High-Temperature Wear Resistance of Ti–6Al–4V alloy via Si–B–Y Co-Deposited Coatings","authors":"Xuan Li, Xu-yi Zhang, Zhi-zhang Liu, Li-jing Zhang, Lei Luo, Sheng Lai","doi":"10.1007/s12540-024-01787-6","DOIUrl":"https://doi.org/10.1007/s12540-024-01787-6","url":null,"abstract":"<p>Si-deposited and Si–B–Y co-deposited coatings were prepared on the Ti–6Al–4V alloy using the pack cementation technique. The microstructures of the coatings, as well as their high-temperature wear performance and mechanisms, were comparatively investigated. The results illustrated that the Si–B–Y co-deposited coating had a similar structure with the Si-deposited coating, both of them possessed three-layer structures: an outer layer of TiSi<sub>2</sub> matrix, a middle layer of TiSi, and an inner layer of Ti<sub>5</sub>Si<sub>4</sub> and Ti<sub>5</sub>Si<sub>3</sub> mixtures. However, numerous TiB<sub>2</sub> and Y<sub>2</sub>O<sub>3</sub> phases formed in the superficial zones of the Si–B–Y co-deposited coating. The micro-hardness of the Si-deposited and Si–B–Y co-deposited coatings was significantly higher than that of the Ti–6Al–4V substrate, and displayed a gradual decrease tendency from the coating surface to the interior. Compared to the Si-deposited coating, the Si–B–Y co-deposited coating possessed a more compact structure and higher surface hardness, and offered better anti-wear performance for the Ti–6Al–4V substrate at 600 ℃. Worn against the GCr15 ball, the average friction coefficient of the Si–B–Y co-deposited coating (~ 0.449) were near equal to that of the Si-deposited coating (~ 0.474), but lower than that of the Ti–6Al–4V substrate (~ 0.685). The wear rate of the Si–B–Y co-deposited coating was approximately 4.1 × 10⁻<sup>5</sup> mm<sup>3</sup>/N·m, lower than that of the Ti–6Al–4V substrate by about 74.6%, and the Si-deposited coating by about 37.3%, respectively. When worn against the Al<sub>2</sub>O<sub>3</sub> ball, the average friction coefficient of the Si–B–Y co-deposited coating (~ 0.742) was lower than that of the Si-deposited coating (~ 0.811), but higher than that of the Ti–6Al–4V substrate (~ 0.551). The wear rate of the coating was approximately 1.22 × 10<sup>−4</sup> mm<sup>3</sup>/N·m, lower than that of the Ti–6Al–4V substrate by about 72.2%, and the Si-deposited coating by about 35%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of Microstructure and Mechanical Properties of Co-Cr-Mo Alloy by Hot Forging and Subsequent Radial Shear Rolling 通过热锻和随后的径向剪切轧制形成 Co-Cr-Mo 合金的显微组织和力学性能
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-26 DOI: 10.1007/s12540-024-01791-w
Yury Gamin, Tatiana Kin, Sergei Galkin, Alexander Skugorev, Mukhamed Karashaev, Abdullah Mahmoud Alhaj Ali
{"title":"Formation of Microstructure and Mechanical Properties of Co-Cr-Mo Alloy by Hot Forging and Subsequent Radial Shear Rolling","authors":"Yury Gamin, Tatiana Kin, Sergei Galkin, Alexander Skugorev, Mukhamed Karashaev, Abdullah Mahmoud Alhaj Ali","doi":"10.1007/s12540-024-01791-w","DOIUrl":"https://doi.org/10.1007/s12540-024-01791-w","url":null,"abstract":"<p>The improving of metallic biomaterials, such as Co-Cr-Mo alloys, is an important task for increasing the durability of orthopedic implants. In this study, the deformation method of the Co-28Cr-6Mo alloy including hot forging and subsequent radial shear rolling was tested for the first time. For the obtained bars, the analysis of the microstructure formation and mechanical properties was carried out. The proposed method of thermomechanical processing made possible to form a duplex structure (γ-FCC + ε-HCP) in the alloy, in contrast to the hot forging at which a single-phase structure (ε-HCP) was observed. The resulting structure provided higher strength characteristics at the bar surface such as YS ∼ 715 MPa, UTS ∼ 1164 MPa due to the higher content of the ε-phase, while in the central zone these indicators were YS ∼ 492 MPa and UTS ∼ 948 MPa. The main effect of hardening after forging was grain refinement and formation of a single-phase composition (ε-HCP). While in the context of radial shear rolling, there was a reduction in grain size and an increase in the volume fraction of the deformed structure. Moreover, the plasticity almost did not change over the cross-section of the bar due to combination of structural and phase composition obtained after radial shear rolling. The results can provide the basis for development of industrial technology to produce long deformed semi-finished products for medical application.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure, Mechanical Properties and Tribological Behavior of Wire Electron Beam Additive Manufactured Eutectic Al–12Si Alloy 线材电子束添加剂制造的共晶 Al-12Si 合金的微观结构、力学性能和摩擦学行为
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-26 DOI: 10.1007/s12540-024-01785-8
Sergei Tarasov, Ruslan Balokhonov, Veronika Utyaganova, Anna Zykova, Nikolai Savchenko, Andrey Vorontsov, Varvara Romanova, Nikolai Shamarin, Evgeny Knyazhev, Denis Gurianov, Evgeny Moskvichev
{"title":"Microstructure, Mechanical Properties and Tribological Behavior of Wire Electron Beam Additive Manufactured Eutectic Al–12Si Alloy","authors":"Sergei Tarasov, Ruslan Balokhonov, Veronika Utyaganova, Anna Zykova, Nikolai Savchenko, Andrey Vorontsov, Varvara Romanova, Nikolai Shamarin, Evgeny Knyazhev, Denis Gurianov, Evgeny Moskvichev","doi":"10.1007/s12540-024-01785-8","DOIUrl":"https://doi.org/10.1007/s12540-024-01785-8","url":null,"abstract":"<p>Wire electron beam additive manufacturing has been used to build a wall from Al–12Si wire on an AA5056 substrate. The microstructures composed of aluminum dendrites and Al/Si eutectics have been revealed along with heat-affected bands where silicon crystals coarsened by reheating from deposition of the next layer. Fine precipitates were detected in the aluminum grains subjected to reheating. Twinning of silicon particles was found by means of TEM, which was the result of the thermal expansion mismatch stresses that appeared in cooling to the room temperatures as shown by direct FEM numerical simulations. Ultimate tensile strength (UTS) and yield stress (YS) ranged from 178–185 MPa and 104–115 MPa, respectively, as compared to 84 and 142 MPa for the as-cast alloy. Minimal wear was obtained on samples cut from the middle part of the wall. Wire additive manufacturing allowed obtaining the Al–12Si structures with equiaxed eutectic Si crystals that allowed improving tensile and compression strengths as well as wear resistance as compared to those of the as-cast alloy.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"8 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study About the Forming Mechanism of Boron in Al-1B Alloy 关于 Al-1B 合金中硼的形成机理的研究
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-24 DOI: 10.1007/s12540-024-01768-9
Jie Liu, Yan Wang, Xiaoli Cui
{"title":"Study About the Forming Mechanism of Boron in Al-1B Alloy","authors":"Jie Liu, Yan Wang, Xiaoli Cui","doi":"10.1007/s12540-024-01768-9","DOIUrl":"https://doi.org/10.1007/s12540-024-01768-9","url":null,"abstract":"<p>In order to study the forms of boron in Al-B alloys with lower boron content, and expand the application scope of Al-B alloys with lower boron content. Al-1B alloy was prepared by mechanical alloying and vacuum sintering, the formation and evolution mechanism of boron in Al melt were analyzed in detail. Owing to the high concentration gradient of boron at a certain point in the Al melt, AlB<sub>12</sub> is easily formed at first and then peritectic reaction between AlB<sub>12</sub> and Al happened forming AlB<sub>12</sub>@AlB<sub>2</sub> composite structure.The AlB<sub>12</sub>@AlB<sub>2</sub> composite structure is easily reserved and keeps stable in Al-1B alloy. During the boronization process, AlB<sub>2</sub> reacts with transition metal elements, and AlB<sub>12</sub> remains in the Al melt.The study is beneficial for improving the efficiency of boronization treatment.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"409 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Different Types of Glass Powders on the Corrosion and Wear Resistance of Peo Coatings Produced on 6061 Aluminum Alloy 不同类型的玻璃粉对 6061 铝合金 Peo 涂层耐腐蚀性和耐磨性的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-24 DOI: 10.1007/s12540-024-01786-7
Luca Pezzato, Lorena Kostelac, Lavinia Tonelli, Hamada Elsayed, Daniel Kajánek, Enrico Bernardo, Carla Martini, Manuele Dabalà, Katya Brunelli
{"title":"Effect of Different Types of Glass Powders on the Corrosion and Wear Resistance of Peo Coatings Produced on 6061 Aluminum Alloy","authors":"Luca Pezzato, Lorena Kostelac, Lavinia Tonelli, Hamada Elsayed, Daniel Kajánek, Enrico Bernardo, Carla Martini, Manuele Dabalà, Katya Brunelli","doi":"10.1007/s12540-024-01786-7","DOIUrl":"https://doi.org/10.1007/s12540-024-01786-7","url":null,"abstract":"<p>6061 Aluminium alloy was treated with plasma electrolytic oxidation (PEO) in an alkaline silicate-base electrolyte. Recycled glass particles from consumer goods waste were added to the electrolyte in order to investigate the impact of these particles on corrosion and wear resistance of the alloy. A comparison of glass particles from different sources (liquid crystal display (LCD) glass, borosilicate (BS) glass, and soda-lime (SL) glass) has been made. Also, the effect of different current modes, direct (D) and pulsed (P), on glass incorporation and the coatings morphology was studied. The microstructure and thickness of the produced coatings were studied through SEM–EDS analysis and XRD. The wear resistance was evaluated by dry sliding tests vs AISI 52100 bearing steel (block-on-ring contact geometry). The corrosion behavior was analyzed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS), and localized electrochemical characteristics were determined by scanning electrochemical microscopy (SECM). The results evidenced that the addition of glass improved the corrosion resistance of the samples due to the sealing effect on the typical pores of the PEO layer. In detail samples filled with glass particles show from EIS tests polarization resistances up to one order of magnitude higher than the untreated sample in the case of direct current mode and up to two order of magnitude higher in the case of pulsed current mode. The effect on wear resistance is instead strictly related to the type of glass as, if compared to the base PEO layer, it is improved only by selected additives with the more promising results obtained with the LCD glass in direct current mode that produce a decrease of the wear depth of around one order of magnitude in comparison with the sample PEO treated without glass addition. Globally the more promising type of glass particles, both in term of improvement of the wear and of the corrosion properties, seem to be the LCD glass particles. This fact was related to the particular chemical composition of this type of glass and in particular with the alkali-free composition of the glass.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"17 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Y in High-Strength Mg–Y–Cu–Ni Alloy System with Long-Period Stacking Ordered Phase Y 在具有长周期堆积有序相的高强度 Mg-Y-Cu-Ni 合金体系中的作用
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-24 DOI: 10.1007/s12540-024-01793-8
Meng Li, Jonghyun Kim, Zhaobin Zhang, Gao Yu, Bin Jiang, Taekyung Lee, Fusheng Pan
{"title":"Role of Y in High-Strength Mg–Y–Cu–Ni Alloy System with Long-Period Stacking Ordered Phase","authors":"Meng Li, Jonghyun Kim, Zhaobin Zhang, Gao Yu, Bin Jiang, Taekyung Lee, Fusheng Pan","doi":"10.1007/s12540-024-01793-8","DOIUrl":"https://doi.org/10.1007/s12540-024-01793-8","url":null,"abstract":"<p>This study has systematically investigated the effect of Y content on the microstructural evolution and mechanical properties of the Mg–Y–Cu–Ni alloy system. Four alloys, Mg<sub>(98<i>−x</i>)</sub>Y<sub><i>x</i></sub>Cu<sub>1</sub>Ni<sub>1</sub> (<i>x</i> = 1, 2, 3, and 4 at.%), were fabricated and compared in various aspects for this purpose. Increasing Y content gave rise to an increasing fraction of long-period stacking ordered (LPSO) phases, and gradually changed their morphology from massive islands to lamellae. The alloying addition also induced an effective grain refinement, while inhibiting the dynamic recrystallization. When the Y content exceeded 3 at.%, a unique phase formed due to a mechanical mixture of the LPSO phase, the peritectic reaction product of Cu, and the eutectic reaction product of Ni. The mechanical properties were explained in light of the LPSO dispersion parameter. The extruded Mg<sub>95</sub>Y<sub>3</sub>Cu<sub>1</sub>Ni<sub>1</sub> alloy exhibited excellent mechanical properties combining a yield strength of 381 MPa, tensile strength of 458 MPa, and elongation-to-failure of 6.7%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Welding Temperature on Microstructure and Crystallographic Texture Evolution in the Different Weld Zones of Underwater Friction Stir Welding of Dissimilar CuZn40 and AA1100-O Alloys 焊接温度对异种 CuZn40 和 AA1100-O 合金水下搅拌摩擦焊不同焊接区显微结构和结晶纹理演变的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-08-24 DOI: 10.1007/s12540-024-01779-6
Surendra Kumar Lader, Mayuri Baruah, Raj Ballav, Krishna Dutta, Pushpendra Kumar Dwivedi, Bhaskar Santu Mudliyar
{"title":"Influence of Welding Temperature on Microstructure and Crystallographic Texture Evolution in the Different Weld Zones of Underwater Friction Stir Welding of Dissimilar CuZn40 and AA1100-O Alloys","authors":"Surendra Kumar Lader, Mayuri Baruah, Raj Ballav, Krishna Dutta, Pushpendra Kumar Dwivedi, Bhaskar Santu Mudliyar","doi":"10.1007/s12540-024-01779-6","DOIUrl":"https://doi.org/10.1007/s12540-024-01779-6","url":null,"abstract":"<p>Underwater friction stir welding (UwFSW) of dissimilar brass (CuZn40) and aluminum (AA1100-O) joints have a more pronounced effect on the microstructure and crystallographic texture evolution than classical open-air friction stir welding (C-AFSW). In this research, the microstructure and texture evolution mechanism across the weld thickness and different FSW zones are studied. Cross-section of the weld joints developed by UwFSW and C-AFSW were investigated via transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). EBSD data of C-AFSW joints reveal that significant grain refinement occurs in the stirred zone (SZ) due to continuous dynamic recrystallization. As compared to C-AFSW, the microstructural evolution mechanism in UwFSW was found to be very complex in the different parts of the SZ. For UwFSW, discontinuous dynamic recrystallization and geometric dynamic recrystallization were found to be the main microstructural evolution mechanism in the SZ. In addition, the enhanced cooling rates of UwFSW produce a fine grain structure and a large number of high angle boundaries (HABs). Both C-AFSW and UwFSW showed mixed grain structure in the thermomechanically affected zone. TEM results showed dislocation accumulation and annihilation were predominant in UwFSW with fine and denser rod-shaped (θ́-Al<sub>2</sub>Cu) precipitates. The shear textures <span>(A/overline{A })</span>, A<sub>1</sub>*/A<sub>2</sub>* and <span>(B/overline{B })</span> are formed in the SZ of both C-AFSW and UwFSW. However, the shear components <span>(B/overline{B })</span> dominates in the C-AFSW as compared to<span>(A/overline{A })</span>. The result and findings of this research help to understand the microstructure evolution mechanism of CuZn40/AA1100-O FSW joints and further optimize the welding process for application.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"95 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信