{"title":"Effect of In2Se3 Doping on Crystallization and Electrical Conversion Behavior of Sb Films","authors":"Feng Su, and , Yifeng Hu*, ","doi":"10.1021/acsanm.4c0570110.1021/acsanm.4c05701","DOIUrl":"https://doi.org/10.1021/acsanm.4c05701https://doi.org/10.1021/acsanm.4c05701","url":null,"abstract":"<p >The impact of doping In<sub>2</sub>Se<sub>3</sub> in Sb thin films on the crystal structure and electrical properties was investigated. The results demonstrate that the incorporation of In<sub>2</sub>Se<sub>3</sub> enhances the thermal stability and the data retention properties of the film. Moreover, it effectively mitigates resistance drift and elevates the band gap of Sb films. Appropriate doping with In<sub>2</sub>Se<sub>3</sub> inhibits grain growth, refines grain size, and facilitates the formation of an In–Sb bond. Additionally, surface roughness is reduced upon introduction of In<sub>2</sub>Se<sub>3</sub> into Sb, leading to significantly enhanced adhesion between the film and substrate, thereby improving device reliability.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26636–26642 26636–26642"},"PeriodicalIF":5.3,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142842384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hailin Liu, Andong Wang, Mengmeng Wang, Zihao Li, Quanmin Dai*, Shuo Sun, Xuyang Wang, Kaixin Zhang and Lai Wei,
{"title":"One-Step Synthesis of TiO2/FeO(OH) Nano-Heterostructures as Electrocatalysts for the Oxygen Evolution Reaction","authors":"Hailin Liu, Andong Wang, Mengmeng Wang, Zihao Li, Quanmin Dai*, Shuo Sun, Xuyang Wang, Kaixin Zhang and Lai Wei, ","doi":"10.1021/acsanm.4c0541010.1021/acsanm.4c05410","DOIUrl":"https://doi.org/10.1021/acsanm.4c05410https://doi.org/10.1021/acsanm.4c05410","url":null,"abstract":"<p >Transition metal compounds are abundant on Earth and are cost-effective materials. However, their inherent characteristics of low electrical conductivity and low electrocatalytic activity greatly limit their applications as electrocatalysts. In this study, we successfully synthesized TiO<sub>2</sub>/FeO(OH) nanocomposite materials rich in heterogeneous structures using a one-step hydrothermal method and obtained nanostructured TiO<sub>2</sub>/FeO(OH)-2 with excellent electrocatalytic oxygen evolution reaction (OER) performance by adjusting the ratio of Ti elements. The opposite charge regions at the heterojunction interface led to the reconstruction of the built-in electric field, accelerating electron transfer, optimizing the electronic structure during the catalytic reaction process, and ensuring the stability of surface charged active center sites in the heterojunction. Furthermore, in situ Raman measurements confirmed the crucial role of the built-in electric field in the electrocatalytic OER process of the TiO<sub>2</sub>/FeO(OH)-2 nano-heterostructure. The density functional theory calculations further confirmed the promotional effect of the heterogeneous interfaces constructed in TiO<sub>2</sub>/FeO(OH)-2 on the OER activity and also revealed that the intermediate *OOH is the rate-determining step of the OER reaction. The optimized TiO<sub>2</sub>/FeO(OH)-2 composites with p–n heterojunctions featuring nanorod and nanosphere structures recorded an overpotential of 262 mV at 10 mA cm<sup>–2</sup> and exhibited sustained effectiveness over a 100 h period at an overpotential of 300 mV. This study not only provides a simple method for constructing p–n type heterogeneous structure materials but also in situ characterizes the role of heterojunction interfaces in the mechanism of electrocatalytic OER.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27408–27417 27408–27417"},"PeriodicalIF":5.3,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142842136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalaimani Markandan, Yong Wei Tiong, Revathy Sankaran, Sakthinathan Subramanian, Uma Devi Markandan, Vishal Chaudhary, Arshid Numan, Mohammad Khalid, Rashmi Walvekar
{"title":"Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review.","authors":"Kalaimani Markandan, Yong Wei Tiong, Revathy Sankaran, Sakthinathan Subramanian, Uma Devi Markandan, Vishal Chaudhary, Arshid Numan, Mohammad Khalid, Rashmi Walvekar","doi":"10.1080/02648725.2022.2127070","DOIUrl":"10.1080/02648725.2022.2127070","url":null,"abstract":"<p><p>Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3438-3526"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33514978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Goutham Yerrakula, Shyno Abraham, Shiji John, Mehrukh Zeharvi, Samuel Gideon George, V Senthil, Fathi Maiz, Md Habibur Rahman
{"title":"Major implications of single nucleotide polymorphisms in human carboxylesterase 1 on substrate bioavailability.","authors":"Goutham Yerrakula, Shyno Abraham, Shiji John, Mehrukh Zeharvi, Samuel Gideon George, V Senthil, Fathi Maiz, Md Habibur Rahman","doi":"10.1080/02648725.2022.2108997","DOIUrl":"10.1080/02648725.2022.2108997","url":null,"abstract":"<p><p>The number of studies and reviews conducted for the Carboxylesterase gene is limited in comparison with other enzymes. Carboxylesterase (CES) gene or human carboxylesterases (hCES) is a multigene protein belonging to the α/β-hydrolase family. Over the last decade, two major carboxylesterases (CES1 and CES2), located at 16q13-q22.1 on human chromosome 16 have been extensively studied as important mediators in the metabolism of a wide range of substrates. hCES1 is the most widely expressed enzyme in humans, and it is found in the liver. In this review, details regarding CES1 substrates include both inducers (e.g. Rifampicin) and inhibitors (e.g. Enalapril, Diltiazem, Simvastatin) and different types of hCES1 polymorphisms (nsSNPs) such as rs2244613 and rs71647871. along with their effects on various CES1 substrates were documented. Few instances where the presence of nsSNPs exerted a positive influence on certain substrates which are hydrolyzed via hCES1, such as anti-platelets like Clopidogrel when co-administered with other medications such as angiotensin-converting enzyme (ACE) inhibitors were also recorded. Remdesivir, an ester prodrug is widely used for the treatment of COVID-19, being a CES substrate, it is a potent inhibitor of CES2 and is hydrolyzed via CES1. The details provided in this review could give a clear-cut idea or information that could be used for further studies regarding the safety and efficacy of CES1 substrate.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3174-3192"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40599000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering core-shell mesoporous silica and Fe<sub>3</sub>O<sub>4</sub>@Au nanosystems for targeted cancer therapeutics: a review.","authors":"Himani Pathania, Priyanka Chauhan, Vishal Chaudhary, Ajit Khosla, Neetika, Sunil Kumar, Gaurav, Mamta Sharma","doi":"10.1080/02648725.2022.2147685","DOIUrl":"10.1080/02648725.2022.2147685","url":null,"abstract":"<p><p>The extensive utilization of nanoparticles in cancer therapies has inspired a new field of study called cancer nanomedicine. In contrast to traditional anticancer medications, nanomedicines offer a targeted strategy that eliminates side effects and has high efficacy. With its vast surface area, variable pore size, high pore volume, abundant surface chemistry and specific binding affinity, mesoporous silica nanoparticles (MPSNPs) are a potential candidate for cancer diagnosis and treatment. However, there are several bottlenecks associated with nanoparticles, including specific toxicity or affinity towards particular body fluid, which can cater by architecting core-shell nanosystems. The core-shell chemistries, synergistic effects, and interfacial heterojunctions in core-shell nanosystems enhance their stability, catalytic and physicochemical attributes, which possess high performance in cancer therapeutics. This review article summarizes research and development dedicated to engineering mesoporous core-shell nanosystems, especially silica nanoparticles and Fe<sub>3</sub>O<sub>4</sub>@Au nanoparticles, owing to their unique physicochemical characteristics. Moreover, it highlights state-of-the-art magnetic and optical attributes of Fe<sub>3</sub>O<sub>4</sub>@Au and MPSNP-based cancer therapy strategies. It details the designing of Fe<sub>3</sub>O<sub>4</sub>@Au and MPSN to bind with drugs, receptors, ligands, and destroy tumour cells and targeted drug delivery. This review serves as a fundamental comprehensive structure to guide future research towards prospects of core-shell nanosystems based on Fe<sub>3</sub>O<sub>4</sub>@Au and MPSNP for cancer theranostics.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3653-3681"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40709034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anuj Ranjan, Jayati Arora, Abhishek Chauhan, Rupesh Kumar Basniwal, Arpna Kumari, Vishnu D Rajput, Evgeniya V Prazdnova, Arabinda Ghosh, Nobendu Mukerjee, Saglara S Mandzhieva, Svetlana Sushkova, Tatiana Minkina, Tanu Jindal
{"title":"Advances in characterization of probiotics and challenges in industrial application.","authors":"Anuj Ranjan, Jayati Arora, Abhishek Chauhan, Rupesh Kumar Basniwal, Arpna Kumari, Vishnu D Rajput, Evgeniya V Prazdnova, Arabinda Ghosh, Nobendu Mukerjee, Saglara S Mandzhieva, Svetlana Sushkova, Tatiana Minkina, Tanu Jindal","doi":"10.1080/02648725.2022.2122287","DOIUrl":"10.1080/02648725.2022.2122287","url":null,"abstract":"<p><p>An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3226-3269"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33489354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deepika N P, Mohammed Shameer Kondengadan, Sherouk Hussein Sweilam, Md Habibur Rahman, K M Muhasina, Puja Ghosh, Divya Bhargavi, Divya Jyothi Palati, Fathi Maiz, B Duraiswamy
{"title":"Neuroprotective role of coconut oil for the prevention and treatment of Parkinson's disease: potential mechanisms of action.","authors":"Deepika N P, Mohammed Shameer Kondengadan, Sherouk Hussein Sweilam, Md Habibur Rahman, K M Muhasina, Puja Ghosh, Divya Bhargavi, Divya Jyothi Palati, Fathi Maiz, B Duraiswamy","doi":"10.1080/02648725.2022.2122296","DOIUrl":"10.1080/02648725.2022.2122296","url":null,"abstract":"<p><p>Neurodegenerative disease (ND) is a clinical condition in which neurons degenerate with a consequent loss of functions in the affected brain region. Parkinson's disease (PD) is the second most progressive ND after Alzheimer's disease (AD), which affects the motor system and is characterized by the loss of dopaminergic neurons from the nigrostriatal pathway in the midbrain, leading to bradykinesia, rigidity, resting tremor, postural instability and non-motor symptoms such as cognitive declines, psychiatric disturbances, autonomic failures, sleep difficulties, and pain syndrome. Coconut oil (CO) is an edible oil obtained from the meat of <i>Cocos nucifera</i> fruit that belongs to the palm family and contains 92% saturated fatty acids. CO has been shown to mediate oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and excitotoxicity-induced effects in PD in various <i>in vitro</i> and <i>in vivo</i> models as a multi-target bioagent. CO intake through diet has also been linked to a decreased incidence of PD in people. During digestion, CO is broken down into smaller molecules, like ketone bodies (KBs). The KBs then penetrate the blood-brain barrier (BBB) and are used as a source of energy its ability to cross BBB made this an important class of natural remedies for the treatment of ND. The current review describes the probable neuroprotective potential pathways of CO in PD, either prophylactic or therapeutic. In addition, we briefly addressed the important pathogenic pathways that might be considered to investigate the possible use of CO in neurodegeneration such as AD and PD.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3346-3378"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33494809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biogenic biocompatible silver nanoparticles: a promising antibacterial agent.","authors":"Sandip Kumar Chandraker, Ravindra Kumar","doi":"10.1080/02648725.2022.2106084","DOIUrl":"10.1080/02648725.2022.2106084","url":null,"abstract":"<p><p>The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, <i>Citrobacter koseri</i>, <i>Bacillus cereus</i>, <i>Salmonella typhi</i>, <i>Klebsipneumoniaoniae</i>, <i>Vibrio parahaemolyticus</i>, <i>Pseudomonas Aeruginosa</i>, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3113-3147"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40663232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shristi Kishore, Sumira Malik, Maulin P Shah, Jutishna Bora, Vishal Chaudhary, Lamha Kumar, Riyaz Z Sayyed, Anuj Ranjan
{"title":"A comprehensive review on removal of pollutants from wastewater through microbial nanobiotechnology -based solutions.","authors":"Shristi Kishore, Sumira Malik, Maulin P Shah, Jutishna Bora, Vishal Chaudhary, Lamha Kumar, Riyaz Z Sayyed, Anuj Ranjan","doi":"10.1080/02648725.2022.2106014","DOIUrl":"10.1080/02648725.2022.2106014","url":null,"abstract":"<p><p>Increasing wastewater pollution owing to the briskly rising human population, rapid industrialization, and fast urbanization has necessitated highly efficient wastewater treatment technologies. Although several methods of wastewater treatments are in practice, expensiveness, use of noxious chemicals, generation of unsafe by-products, and longer time consumption restrain their use to a great extent. Over the last few decades, nanotechnological wastewater treatment approaches have received widespread recognition globally. Microbially fabricated nanoparticles reduce the utilization of reducing, capping, and stabilizing agents, and exhibit higher adsorptive and catalytic efficiency than chemically synthesized nanomaterials. The present review comprehensively summarizes the applications of microbial nanotechnology in the removal of a wide range of noxious wastewater pollutants. Moreover, prospects and challenges associated with the integration of nanotechnology with other biological treatment technologies including algal-membrane bioreactor, aerobic digestion, microbial fuel cells, and microbial nanofiber webs have also been briefly discussed.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3087-3112"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40582078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}