Acta biochimica et biophysica Sinica最新文献

筛选
英文 中文
Tanshinone IIA potentiates the therapeutic efficacy of glucocorticoids in lipopolysaccharide-treated HEI-OC1 cells through modulation of the FOXP3/Nrf2 signaling pathway. 丹参酮 IIA 通过调节 FOXP3/Nrf2 信号通路,增强糖皮质激素对脂多糖处理的 HEI-OC1 细胞的疗效。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-01 DOI: 10.3724/abbs.2024194
Jie Li, Xiaoyan Zhu, Shiming Ye, Qi Dong, Jie Hou, Jing Liu, Wandong She
{"title":"Tanshinone IIA potentiates the therapeutic efficacy of glucocorticoids in lipopolysaccharide-treated HEI-OC1 cells through modulation of the FOXP3/Nrf2 signaling pathway.","authors":"Jie Li, Xiaoyan Zhu, Shiming Ye, Qi Dong, Jie Hou, Jing Liu, Wandong She","doi":"10.3724/abbs.2024194","DOIUrl":"https://doi.org/10.3724/abbs.2024194","url":null,"abstract":"<p><p>Glucocorticoids (GCs) are commonly used to treat sudden sensorineural hearing loss (SSNHL), although some patients are resistant to this therapeutic approach. Clinical studies have demonstrated the efficacy of tanshinone IIA (TA) in combination with GC for managing various human ailments. However, it remains unclear whether TA can mitigate GC resistance in SSNHL. Our aim is to elucidate the role of NRF2-induced transcriptional regulation of HDAC2 in influencing GC resistance and investigate the involvement of TA-related molecular pathways in GC resistance. Here, HEI-OC1 cells are treated with lipopolysaccharide (LPS) to establish an <i>in vitro</i> model for SSNHL. The cells are subsequently treated with dexamethasone (DXE) or DXE+TA. RT-qPCR and western blot analysis are used to measure the mRNA and protein levels of Forkhead box P3 (FOXP3), nuclear factor erythroid 2-related factor 2 (NRF2), and histone deacetylase 2 (HDAC2). Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays are carried out to assess cell proliferation. Flow cytometry analysis is performed to evaluate apoptosis. Mechanistic studies involve chromatin immunoprecipitation (ChIP), luciferase reporter, and DNA pull-down assays. Our results show that treatment with TA+DEX significantly increases proliferation and suppresses apoptosis in LPS-treated HEI-treated OC1 cells. TA upregulates HDAC2 expression by activating NRF2-mediated transcription of HDAC2, with the NRF2-HDAC2 binding site located at bases 419-429 (ATGACACTCCA) in the promoter sequence of <i>HDAC2</i>. Furthermore, TA upregulates FOXP3 expression to activate NRF2 transcription, with the predicted FOXP3-binding site located at bases 864-870 (GCAAACA) in the promoter sequence of <i>NRF2</i>. In summary, these findings suggest that TA enhances the therapeutic effects of GC on the proliferation and apoptosis of HEI OC1 cells by increasing FOXP3/Nrf2 expression. These results indicate that TA may be promising for ameliorating GC resistance in patients with SSNHL.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clitoria ternatea L. flower-derived anthocyanins and flavonoids inhibit bladder cancer growth by suppressing SREBP1 pathway-mediated fatty acid synthesis. 虎耳草花源花青素和类黄酮通过抑制 SREBP1 通路介导的脂肪酸合成抑制膀胱癌生长
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-29 DOI: 10.3724/abbs.2024192
Chenkai Liu, Jue Liu, Gao Liu, Yusong Song, Xiuyu Yang, Honglei Gao, Cheng Xiang, Jie Sang, Tianrui Xu, Jun Sang
{"title":"<i>Clitoria ternatea</i> L. flower-derived anthocyanins and flavonoids inhibit bladder cancer growth by suppressing SREBP1 pathway-mediated fatty acid synthesis.","authors":"Chenkai Liu, Jue Liu, Gao Liu, Yusong Song, Xiuyu Yang, Honglei Gao, Cheng Xiang, Jie Sang, Tianrui Xu, Jun Sang","doi":"10.3724/abbs.2024192","DOIUrl":"https://doi.org/10.3724/abbs.2024192","url":null,"abstract":"<p><p><i>Clitoria ternatea</i> L. flowers are used as traditional herbal medicines and are known for their advanced pharmacological activities. Flavonoids and anthocyanins reportedly contribute to the therapeutic properties of <i>C</i>. <i>ternatea</i> flowers; however, their potential anti-bladder cancer effects and molecular mechanisms remain unknown. In this study, flavonoid- and anthocyanin-rich samples from <i>C</i>. <i>ternatea</i> flowers (DDH) are prepared via macroporous resin-based extraction coupled with an efficient and reliable two-dimensional UPLC-DAD-MS/MS method. <i>In vitro</i> and <i>in vivo</i> studies reveal that DDH can inhibit bladder cancer cell growth and enhance the anti-bladder cancer activity of cisplatin. RNA-seq combined with KEGG analysis reveals that fatty acid synthesis is closely related to the anti-bladder cancer effect of DDH. Furthermore, DDH dose-dependently reduces cellular fatty acid levels in bladder cancer cells, and the addition of fatty acids significantly mitigates DDH-induced cell growth inhibition. Subsequent findings reveal that DDH downregulates sterol regulatory element-binding protein 1 (SREBP1), a key transcriptional regulator of <i>de novo</i> fatty acid synthesis in cancer cells, and its downstream targets (FASN, SCD1, and ACC). Additionally, this study demonstrates that gallic acid not only enhances the stability of DDH but also synergistically potentiates its anti-bladder cancer activity. Our study suggests that targeting the SREBP1 pathway is an effective strategy in bladder cancer therapy, and the ability of DDH to induce cell death by inhibiting the SREBP1 pathway and its good tolerance in mice make it a promising strategy for preventing and treating bladder cancer.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Battling pain from osteoarthritis: causing novel cell death. 对抗骨关节炎带来的疼痛:导致新型细胞死亡
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-28 DOI: 10.3724/abbs.2024189
Yuheng Zhang, Huaqiang Tao, Liyuan Zhang, Xueyan Li, Yi Shi, Wen Sun, Wenlong Chen, Yuhu Zhao, Liangliang Wang, Xing Yang, Chengyong Gu
{"title":"Battling pain from osteoarthritis: causing novel cell death.","authors":"Yuheng Zhang, Huaqiang Tao, Liyuan Zhang, Xueyan Li, Yi Shi, Wen Sun, Wenlong Chen, Yuhu Zhao, Liangliang Wang, Xing Yang, Chengyong Gu","doi":"10.3724/abbs.2024189","DOIUrl":"10.3724/abbs.2024189","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a significant contributor to pain and disability worldwide. Pain is the main complaint of OA patients attending the clinic and has a large impact on their quality of life and economic standards. However, existing treatments for OA-related pain have not been shown to achieve good relief. The main focus is on preventing and slowing the progression of OA so that the problem of OA pain can be resolved. Pain caused by OA is complex, with the nature, location, duration, and intensity of pain changing as the disease progresses. Previous research has highlighted the role of various forms of cell death, such as apoptosis and necrosis, in the progression of pain in OA. Emerging studies have identified additional forms of novel cell death, such as pyroptosis, ferroptosis, and necroptosis that are linked to pain in OA. Different types of cell death contribute to tissue damage in OA by impacting inflammatory responses, reactive oxygen species (ROS) production, and calcium ion levels, ultimately leading to the development of pain. Evidence suggests that targeting novel types of cell death could help alleviate pain in OA patients. This review delves into the complex mechanisms of OA pain, explores the relationship between different modes of novel cell death and pain, and proposes novel cell death as a viable strategy for the treatment of these conditions, with the goal of providing scientific references for the development of future OA pain treatments and drugs.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"169-181"},"PeriodicalIF":3.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tim-1-mediated extracellular matrix promotes the development of hepatocellular carcinoma. Tim-1 介导的细胞外基质促进了肝细胞癌的发展。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-23 DOI: 10.3724/abbs.2024191
Ruheng Hua, Pengfei Yu, Wanting Zheng, Nuwa Wu, Wangjianfei Yu, Qingyu Kong, Jun He, Lei Qin
{"title":"Tim-1-mediated extracellular matrix promotes the development of hepatocellular carcinoma.","authors":"Ruheng Hua, Pengfei Yu, Wanting Zheng, Nuwa Wu, Wangjianfei Yu, Qingyu Kong, Jun He, Lei Qin","doi":"10.3724/abbs.2024191","DOIUrl":"10.3724/abbs.2024191","url":null,"abstract":"<p><p>Tim-1 (T-cell immunoglobulin and mucin domain 1), also known as Kim-1 (kidney injury molecule 1) or hepatitis A virus cellular receptor 1 (HAVCR1), is a transmembrane protein expressed on various immune and epithelial cells. It plays a role in modulating inflammatory and immune responses. In this study, we find that Tim-1 is overexpressed in hepatocellular carcinoma (HCC) samples and that its expression is significantly correlated with postoperative survival. Bulk RNA sequencing reveals a general upregulation of extracellular matrix-related genes in HCC tissues with Tim-1 overexpression. The results of the cell and <i>in vivo</i> experiments reveal that Tim-1 in HCC not only affects biological processes such as the proliferation, migration, and invasion of HCC cells but also broadly promotes extracellular matrix processes by influencing cytokine secretion. Further studies demonstrate that Tim-1 mediates the activation of hepatic stellate cells and upregulates Th1 and Th2 cytokines, thereby promoting HCC progression. Thus, Tim-1 may represent a novel target for future interventions in HCC and liver fibrosis.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"1761-1773"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CircMALAT1 promotes the proliferation and metastasis of intrahepatic cholangiocarcinoma via the miR-512-5p/VCAM1 axis. CircMALAT1 通过 miR-512-5p/VCAM1 轴促进肝内胆管癌的增殖和转移。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-23 DOI: 10.3724/abbs.2024185
Meixia Zhang, Mingyan He, Liangliang Bai, Fan Du, Yingping Xie, Bimin Li, Yuming Zhang
{"title":"CircMALAT1 promotes the proliferation and metastasis of intrahepatic cholangiocarcinoma via the miR-512-5p/VCAM1 axis.","authors":"Meixia Zhang, Mingyan He, Liangliang Bai, Fan Du, Yingping Xie, Bimin Li, Yuming Zhang","doi":"10.3724/abbs.2024185","DOIUrl":"10.3724/abbs.2024185","url":null,"abstract":"<p><p>Circular RNAs play a pivotal role in the progression of various cancers. In our previous study, we observed high expression of the circRNA MALAT1 (cMALAT1) in intrahepatic cholangiocarcinoma (ICC) cells co-incubated with activated hepatic stellate cells. This study is designed to explore the roles of cMALAT1 and the underlying mechanisms in ICC. We find that cMALAT1 significantly facilitates the progression of ICC both <i>in vitro</i> and <i>in vivo</i>. The binding between cMALAT1 and miR-512-5p is subsequently confirmed through RNA pull-down experiments. As anticipated, the application of miR-512-5p mimics noticeably reverses the cMALAT1 overexpression-induced malignant phenotypes of ICC cells. Furthermore, <i>VCAM1</i> is identified as a downstream gene of the cMALAT1/miR-512-5p axis. Importantly, silencing of <i>VCAM1</i> not only effectively suppresses the malignant phenotypes of ICC cells but also significantly impairs the functions of cMALAT1. Our study reveals that cMALAT1 promotes the progression of ICC by competitively binding to <i>VCAM1</i> mRNA with miR-512-5p, leading to the upregulation of VCAM1 expression and the activation of the PI3K/AKT signaling pathway.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"223-236"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diacylglycerol kinase γ facilitates the proliferation and migration of neural stem cells in the developing neural tube. 二酰甘油激酶γ能促进发育中神经管中神经干细胞的增殖和迁移。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-23 DOI: 10.3724/abbs.2024156
Huilin Cui, Jiazheng Du, Jianshan Xie, Jixia Zhang, Yun Tao, Yige Huang, Lei Li, Ximei Cao, Yu Zhang
{"title":"Diacylglycerol kinase γ facilitates the proliferation and migration of neural stem cells in the developing neural tube.","authors":"Huilin Cui, Jiazheng Du, Jianshan Xie, Jixia Zhang, Yun Tao, Yige Huang, Lei Li, Ximei Cao, Yu Zhang","doi":"10.3724/abbs.2024156","DOIUrl":"10.3724/abbs.2024156","url":null,"abstract":"<p><p>In this study, we aim to investigate diacylglycerol kinase (DGK) γ expression in developing neural tubes (NTs) and its effects on neural stem cell (NSC) proliferation and migration. Whole-mount <i>in situ</i> hybridization (WMISH) and immunohistochemistry are performed to explore DGKγ localization in developing NTs <i>in vivo</i>. NSCs are treated with sh-DGKγ, R59949, or PMA <i>in vitro</i>. Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and neurosphere formation assay are utilized to evaluate NSC proliferation. Neurosphere migration assay and a transwell chamber assay are used to assess NSC migration. The diacylglycerol (DAG) content is detected via enzyme-linked immunosorbent assay (ELISA). The mRNA expression of DGKγ is detected via quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of DGKγ, protein kinase C (PKC) and phosphorylated PKC (p-PKC) are detected via western blot analysis. The results show that DGKγ mRNA is expressed predominantly in developing NTs. The neuroepithelium in developing NTs is positive for NSC markers, including Nestin, glial fibrillary acidic protein (GFAP), and DGKγ. DGKγ is expressed in the cytoplasm and nucleus of the neuroepithelium and is coexpressed with p-PKCγ and p-PKCδ. The proliferation of NSCs, the number of EdU-positive NSCs, and the number of neurospheres are decreased by sh-DGKγ and R59949 but increased by PMA. There is a shorter migration distance of NSCs and fewer migrated NSCs in the sh-DGKγ, R59949 and PMA groups. DAG content and the p-PKCδ/PKCδ ratio are increased by sh-DGKγ, R59949 and PMA, whereas the p-PKCγ/PKCγ ratio is decreased by PMA. Taken together, our findings indicate that DGKγ facilitates NSC proliferation and migration, which is responsible for the participation of DGK in NT development. DGKγ facilitates NSC migration via the DAG/PKCδ pathway.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"250-260"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Germacrone ameliorates acute lung injury induced by intestinal ischemia-reperfusion by regulating macrophage M1 polarization and mitochondrial defects. 胚芽鞘氨醇通过调节巨噬细胞M1极化和线粒体缺陷改善肠缺血再灌注引起的急性肺损伤
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-22 DOI: 10.3724/abbs.2024164
Yunguang Wang, Xinxin He, Hua Zhang, Wei Hu
{"title":"Germacrone ameliorates acute lung injury induced by intestinal ischemia-reperfusion by regulating macrophage M1 polarization and mitochondrial defects.","authors":"Yunguang Wang, Xinxin He, Hua Zhang, Wei Hu","doi":"10.3724/abbs.2024164","DOIUrl":"10.3724/abbs.2024164","url":null,"abstract":"<p><p>Intestinal ischemia-reperfusion (I/R) injury severely affects the lungs. Germacrone (Ger) possesses anti-inflammatory and antioxidant properties. However, it is unclear whether it protects the lungs from I/R injury. In this study, we elucidate the mechanisms by which Ger protects lungs from I/R injury. C57BLKS/J male mice are subjected to I/R injury via complete clamping of the superior mesenteric artery. Ger is administered before intestinal I/R. Mitochondrial morphology is observed via electron microscopy. The histopathology of the lung tissues is monitored via hematoxylin-eosin and immunofluorescence staining. The mitochondrial oxygen consumption rate is measured via an XF96 extracellular flux analyzer. In the I/R mouse model, lung specimens present significant lung damage accompanied by increases in the levels of collagen III, vimentin, and α-SMA in lung tissues. After treatment with Ger, lung impairment and fibrosis in I/R-induced acute lung injury (ALI) model mice are restored, suggesting that Ger improves I/R-ALI. In addition, Ger administration decreases the release of inflammatory factors such as IL-1β, IL-6, and COX2, as well as the expressions of M1 macrophage markers, facilitating cell survival in the I/R-ALI model. Additionally, Ger (EC50: 47.16 μM) ameliorates mitochondrial dysfunction by increasing I/R-ALI-induced apoptosis, increasing the expression of SIRT1, and reducing the levels of HIF1-α, Nrf2, and OGG1 in MLE-12 cells. Ger may affect macrophage polarization and improve subsequent mitochondrial defects through the SIRT1-HIF1α-Nrf2 signaling pathway in MLE-12 cells, which ultimately improves lung function and lung inflammation in the I/R-ALI model.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"261-273"},"PeriodicalIF":3.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LINC00365 promotes miR-221-5p to inhibit pyroptosis via Dicer in colorectal cancer. LINC00365通过Dicer促进miR-221-5p抑制结直肠癌的化脓过程
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-22 DOI: 10.3724/abbs.2024173
Weiqing Yang, Xiang Huang, Weibin Lv, Yuelong Jin, Yiping Zhu
{"title":"LINC00365 promotes miR-221-5p to inhibit pyroptosis via Dicer in colorectal cancer.","authors":"Weiqing Yang, Xiang Huang, Weibin Lv, Yuelong Jin, Yiping Zhu","doi":"10.3724/abbs.2024173","DOIUrl":"https://doi.org/10.3724/abbs.2024173","url":null,"abstract":"<p><p>Pyroptosis, a newly discovered form of programmed cell death, is involved in the occurrence, development and drug resistance of a variety of tumors and has attracted increasing attention in recent years. LINC00365 is a novel lncRNA that has rarely been reported before. We previously reported that LINC00365 expression in colorectal cancer is closely associated with poor patient outcomes. Additionally, LINC00365 was confirmed to be positively correlated with miR-221-5p, and miR-221-5p is negatively correlated with gasdermin-D (GSDMD) in colorectal cancer tissues. Bioinformatics analysis and luciferase reporter gene experiments revealed that GSDMD is the target gene of miR-221-5p. Cell function experiments and nude mouse tumor transplantation assays confirmed that LINC00365 could regulate the expressions of pyroptosis-related proteins such as Caspase-1, Caspase-11, NLRP3 and GSDMD. RNA pulldown and RNA immunoprecipitation experiments further elucidated the mechanism by which LINC00365 regulates miR-221-5p. In the present study, we observe that LINC00365 promotes the expression of miR-221-5p by binding to the Dicer enzyme to inhibit GSDMD and plays an antipyroptotic role. Our findings suggest that LINC00365 may serve as a molecular biomarker for estimating the prognosis of patients with colorectal cancer and as a potential therapeutic target for colorectal cancer.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of norepinephrine on ovarian dysfunction by mediating ferroptosis in mice model. 去甲肾上腺素通过介导小鼠模型中的铁变态反应对卵巢功能障碍的影响
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-22 DOI: 10.3724/abbs.2024187
Hanqing Hong, Chengqi Xiao, Lichun Weng, Qian Wang, Dongmei Lai
{"title":"The effect of norepinephrine on ovarian dysfunction by mediating ferroptosis in mice model.","authors":"Hanqing Hong, Chengqi Xiao, Lichun Weng, Qian Wang, Dongmei Lai","doi":"10.3724/abbs.2024187","DOIUrl":"https://doi.org/10.3724/abbs.2024187","url":null,"abstract":"<p><p>Studies have shown that stress is associated with ovarian dysfunction. Norepinephrine (NE), a classic stress hormone involved in the stress response, is less recognized for its role in ovarian function. In this study, an NE-treated mouse model is induced by intraperitoneal injection of NE for 4 weeks. Compared with normal control mice, NE-treated mice show disturbances in the estrous cycle, decreased levels of anti-Mullerian hormone (AMH) and estradiol (E2), and increased level of follicle-stimulating hormone (FSH). Additionally, the numbers of primordial follicles, primary follicles, secondary follicles, and antral follicles are decreased, whereas the number of atretic follicles is increased in NE-treated mice, indicating NE-induced ovarian dysfunction. RNA sequencing further reveals that genes associated with ferroptosis are significantly enriched in NE-treated ovarian tissues. Concurrently, the levels of reactive oxygen species (ROS), ferrous ions, and malondialdehyde (MDA) are increased, whereas the expression level of glutathione peroxidase 4 (GPX4) is decreased. To elucidate the mechanism of NE-induced ferroptosis in ovaries and the potential reversal by Coenzyme Q10 (CoQ10), an antioxidant, we conduct both <i>in vitro</i> and <i>in vivo</i> experiments. <i>In vitro</i>, the granulosa cell line KGN, when treated with NE, shows decreased cell viability, reduced expression of GPX4, elevated levels of ferrous ion and ROS, and increased MDA level. However, these NE-induced changes are reversed by the addition of CoQ10. Compared with the NE group, the NE-treated mice supplemented with CoQ10 present increased GPX4 level and decreased iron, ROS, and MDA levels. Moreover, the differential expression of genes associated with ferroptosis induced by NE is ameliorated by CoQ10 in NE-treated mice. Additionally, CoQ10 improves ovarian function, as evidenced by increased ovarian weight, more regular estrous cycles, and an increase in follicles at various stages of growth in NE-treated mice. In conclusion, NE induces ovarian dysfunction by triggering ferroptosis in ovarian tissues, and CoQ10 represents a promising approach for protecting reproductive function by inhibiting ferroptosis.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NLRP3 inflammasome-mediated disruption of mitochondrial homeostasis in alveolar macrophages contributes to ozone-induced acute lung inflammatory injury. NLRP3炎症体介导的肺泡巨噬细胞线粒体平衡破坏是臭氧诱发急性肺部炎症损伤的原因之一。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-10-17 DOI: 10.3724/abbs.2024171
Xinyi Miao, Xinling Li, Pengwei Ma, Mengyuan Li, Yuting Jiang, Pengpeng Wang, Xiaolei Zhou, Ling Wang, Pingping Shang, Qiao Zhang, Feifei Feng
{"title":"NLRP3 inflammasome-mediated disruption of mitochondrial homeostasis in alveolar macrophages contributes to ozone-induced acute lung inflammatory injury.","authors":"Xinyi Miao, Xinling Li, Pengwei Ma, Mengyuan Li, Yuting Jiang, Pengpeng Wang, Xiaolei Zhou, Ling Wang, Pingping Shang, Qiao Zhang, Feifei Feng","doi":"10.3724/abbs.2024171","DOIUrl":"https://doi.org/10.3724/abbs.2024171","url":null,"abstract":"<p><p>Ozone (O <sub>3</sub>), a prevalent atmospheric pollutant, can induce lung injury. However, the molecular mechanisms of O <sub>3</sub>-induced acute lung inflammatory injury remain unclear. In this study, we investigate the abnormal changes in and molecular mechanism of mitochondrial homeostasis in alveolar macrophages (AMs) in O <sub>3</sub>-induced acute lung inflammatory injury mice. Mitochondria and mitochondrial reactive oxygen species (mtROS) are labeled with Mito-Tracker® Deep Red and MitoSOX Red, respectively. Mitochondrial DNA (mtDNA) in AMs from the bronchoalveolar lavage fluid (BALF) is detected via real-time PCR, and the expressions of mitochondrial fusion/fission-related and biogenesis-related proteins in AMs are determined via immunofluorescence staining. Our data show that in O <sub>3</sub>-induced acute lung inflammatory injury mice, the number of AMs and the protein expression of the NLRP3 inflammasome complex in the lung tissue are increased. In AMs from O <sub>3</sub>-exposed mice, the number of mitochondria, mtROS, and fission-related protein DRP1 are increased, but the levels of Na <sup>+</sup>-K <sup>+</sup>-ATPase, fusion-related protein OPA1, biogenesis-related protein NRF1 and mtDNA are significantly decreased. Compared with that in O <sub>3</sub>-exposed WT mice, lung inflammation is attenuated, especially the indicators of mitochondrial homeostatic imbalance in AMs, which are alleviated in NLRP3 <sup>‒/‒</sup> and Caspase-1 <sup>‒/‒</sup> mice after O <sub>3</sub> exposure. These findings indicate that the NLRP3 inflammasome-mediated imbalance in mitochondrial homeostasis in AMs contributes to O <sub>3</sub>-induced acute lung inflammatory injury. This study may provide a new target for the prevention of lung inflammation induced by O <sub>3</sub>.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信