Chen Xie, Mingyue Zhu, Ruirui Shi, Liu Yang, Xiaoya An, Chao Wang
{"title":"Annexins: central regulators of plant growth and stress signaling.","authors":"Chen Xie, Mingyue Zhu, Ruirui Shi, Liu Yang, Xiaoya An, Chao Wang","doi":"10.3724/abbs.2024228","DOIUrl":null,"url":null,"abstract":"<p><p>Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics. Members of the annexin family have diverse functions, including binding to F-actin, participating in ATP and GTP hydrolysis, and even serving as peroxidases or cation channels. Annexins play pivotal roles in plant growth and stress signaling. They can respond sensitively to environmental, metabolic, and developmental signals, thereby affecting cytoskeleton remodeling and exocytosis mechanisms. Plant annexin gene families have been successfully identified in multiple species, and their expression and intracellular localization are precisely regulated by developmental processes and environmental factors. Although research on plant annexins has aroused great interest, their depth and breadth still need further expansion compared with those of animal annexins. This article provides a comprehensive and in-depth review of the characteristics and functions of plant annexin families, revealing their core roles in plant growth and adaptation, and yielding valuable references and insights for future research.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2024228","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics. Members of the annexin family have diverse functions, including binding to F-actin, participating in ATP and GTP hydrolysis, and even serving as peroxidases or cation channels. Annexins play pivotal roles in plant growth and stress signaling. They can respond sensitively to environmental, metabolic, and developmental signals, thereby affecting cytoskeleton remodeling and exocytosis mechanisms. Plant annexin gene families have been successfully identified in multiple species, and their expression and intracellular localization are precisely regulated by developmental processes and environmental factors. Although research on plant annexins has aroused great interest, their depth and breadth still need further expansion compared with those of animal annexins. This article provides a comprehensive and in-depth review of the characteristics and functions of plant annexin families, revealing their core roles in plant growth and adaptation, and yielding valuable references and insights for future research.
期刊介绍:
Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.