Acta biochimica et biophysica Sinica最新文献

筛选
英文 中文
Ivermectin inhibits the growth of ESCC by activating the ATF4-mediated endoplasmic reticulum stress-autophagy pathway. 伊维菌素通过激活 ATF4 介导的内质网应激-自噬途径抑制 ESCC 的生长。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-22 DOI: 10.3724/abbs.2024210
Huiyang Liu, Zhirong Chai, Ya Gao, Yanming Wang, Mengmeng Lu
{"title":"Ivermectin inhibits the growth of ESCC by activating the ATF4-mediated endoplasmic reticulum stress-autophagy pathway.","authors":"Huiyang Liu, Zhirong Chai, Ya Gao, Yanming Wang, Mengmeng Lu","doi":"10.3724/abbs.2024210","DOIUrl":"https://doi.org/10.3724/abbs.2024210","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is one of the most common forms of malignancy worldwide. However, there is currently a lack of effective chemotherapeutic drugs for ESCC. Ivermectin is a broad-spectrum antiparasitic drug with notable antitumor activity. However, the cellular and molecular mechanisms by which ivermectin inhibits cancer growth remain unclear. In this study, we elucidate the role of ivermectin in ESCC suppression by activating the endoplasmic reticulum (ER) stress and autophagy pathways. In transcriptome analyses, we find that activating transcription factor 4 (ATF4) and DNA damage inducible transcript 3 (DDIT3) are involved in the activation of ER stress by ivermectin. Moreover, ivermectin treatment suppresses the growth of ESCC xenograft tumors in nude mice. Taken together, our results establish the antitumor molecular role of ivermectin in targeting the ER stress-autophagy pathway and suggest that ivermectin is a potential drug candidate for the treatment of ESCC.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brucella secretory protein VceA promotes FOXO1 entry into the nucleus to shift host cell metabolism toward glycolysis. 布鲁氏菌分泌蛋白 VceA 促进 FOXO1 进入细胞核,使宿主细胞的新陈代谢转向糖酵解。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-22 DOI: 10.3724/abbs.2024203
Shuzhu Cao, Xinxin Han, Xingmei Deng, Jia Guo, Liangbo Liu, Yu Zhang, Maratbek Suleimenov, Tianyi Zhao, Wei Li, Jian Ding, Songsong Xie, Hui Zhang
{"title":"<i>Brucella</i> secretory protein VceA promotes FOXO1 entry into the nucleus to shift host cell metabolism toward glycolysis.","authors":"Shuzhu Cao, Xinxin Han, Xingmei Deng, Jia Guo, Liangbo Liu, Yu Zhang, Maratbek Suleimenov, Tianyi Zhao, Wei Li, Jian Ding, Songsong Xie, Hui Zhang","doi":"10.3724/abbs.2024203","DOIUrl":"https://doi.org/10.3724/abbs.2024203","url":null,"abstract":"<p><p>Increased glycolytic metabolism is a key step in the reproduction of <i>Brucella</i> and the induction of brucellosis, however, little is known about how this process is regulated during infection. Forkhead box protein O1 (FOXO1) is a transcription factor that regulates energy metabolism. In this study, we employ the yeast two-hybrid system (Y2H) and immunoprecipitation (Co-IP) to reverse screen for the FOXO1 for the first time and identify interactions between FOXO1 and the <i>Brucella</i> secretory protein VceA. Our findings reveal that the <i>Brucella</i> secretory protein VceA colocalizes with FOXO1 in the cytoplasm. Additionally, we observe that infection of macrophages with <i>Brucella abortus</i> <i>2308</i> ( <i>S2308</i>) promotes FOXO1 entry into the nucleus, leading to a significant upregulation of glycolysis level in macrophage. Conversely, in a VceA mutant strain (S2308-ΔVceA), we note a significant reduction in the ability of FOXO1 to enter the nucleus, accompanied by a decrease in glycolysis level. Furthermore, <i>Brucella</i> interacts with FOXO1 through the secreted protein VceA, promoting the entry of FOXO1 into the nucleus and thereby altering host metabolic patterns. This study provides insights into the mechanisms by which <i>Brucella</i> invades host macrophages and induces unique metabolic changes. These insights may offer a novel rationale for developing metabolic therapeutic strategies for the treatment and prevention of related diseases.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PDK1 promotes epithelial ovarian cancer progression by upregulating BGN. PDK1 通过上调 BGN 促进上皮性卵巢癌的进展。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-22 DOI: 10.3724/abbs.2024186
Lei Zhang, Lina Yan, Xin Fu, Ziqi Tao, Shuna Liu, Rong Li, Ting Wang, Yepeng Mao, Wenwen Shang, Mi Gong, Xuemei Jia, Fang Wang
{"title":"PDK1 promotes epithelial ovarian cancer progression by upregulating BGN.","authors":"Lei Zhang, Lina Yan, Xin Fu, Ziqi Tao, Shuna Liu, Rong Li, Ting Wang, Yepeng Mao, Wenwen Shang, Mi Gong, Xuemei Jia, Fang Wang","doi":"10.3724/abbs.2024186","DOIUrl":"https://doi.org/10.3724/abbs.2024186","url":null,"abstract":"<p><p>Pyruvate dehydrogenase kinase 1 (PDK1) is a new therapeutic target that is dysregulated in multiple tumors. This study aims to explore the potential role and regulatory mechanism of PDK1 in epithelial ovarian cancer (EOC). We detect PDK1 expression in EOC tissues and cells using qRT-PCR and western blot analysis, and the effects of PDK1 on EOC cell malignant behaviors are explored. RNA sequencing analyses are performed to explore the differentially expressed genes in <i>PDK1</i>-silenced EOC cells. Furthermore, tumor-bearing mouse models are established to assess the impacts of PDK1 and BGN on EOC tumor growth and metastasis <i>in vivo</i>. The results show that PDK1 is upregulated in EOC tissues and cell lines. Biglycan (BGN) is downregulated in <i>PDK1</i>-silenced EOC cells, and its expression is positively correlated with PDK1 levels in EOC tissues. PDK1 depletion inhibits EOC cell proliferation, migration and invasion. Mechanistically, PDK1 and BGN are colocalized in the cytoplasm of EOC cells and interact with each other. PDK1 positively regulates BGN expression by enhancing <i>BGN</i> mRNA stability. BGN overexpression partially reverses the anti-tumor effects of PDK1 depletion on EOC cell malignant behaviors. PDK1 has also been revealed to upregulate BGN to activate the NF-κB oncogenic pathway in EOC cells. Additionally, PDK1 accelerates tumor growth and metastasis by modulating BGN expression. In conclusion, <i>PDK1</i> functions as an oncogene, facilitating EOC progression by upregulating BGN and activating the NF-κB pathway. These findings may provide valuable biomarkers for the diagnosis and treatment of EOC.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA modifications: emerging players in the regulation of reproduction and development. RNA 修饰:调节繁殖和发育的新兴角色。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-21 DOI: 10.3724/abbs.2024201
Junfei Wen, Qifan Zhu, Yong Liu, Lan-Tao Gou
{"title":"RNA modifications: emerging players in the regulation of reproduction and development.","authors":"Junfei Wen, Qifan Zhu, Yong Liu, Lan-Tao Gou","doi":"10.3724/abbs.2024201","DOIUrl":"10.3724/abbs.2024201","url":null,"abstract":"<p><p>The intricate world of RNA modifications, collectively termed the epitranscriptome, covers over 170 identified modifications and impacts RNA metabolism and, consequently, almost all biological processes. In this review, we focus on the regulatory roles and biological functions of a panel of dominant RNA modifications (including m <sup>6</sup>A, m <sup>5</sup>C, Ψ, ac <sup>4</sup>C, m <sup>1</sup>A, and m <sup>7</sup>G) on three RNA types-mRNA, tRNA, and rRNA-in mammalian development, particularly in the context of reproduction as well as embryonic development. We discuss in detail how those modifications, along with their regulatory proteins, affect RNA processing, structure, localization, stability, and translation efficiency. We also highlight the associations among dysfunctions in RNA modification-related proteins, abnormal modification deposition and various diseases, emphasizing the roles of RNA modifications in critical developmental processes such as stem cell self-renewal and cell fate transition. Elucidating the molecular mechanisms by which RNA modifications influence diverse developmental processes holds promise for developing innovative strategies to manage developmental disorders. Finally, we outline several unexplored areas in the field of RNA modification that warrant further investigation.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"33-58"},"PeriodicalIF":3.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIRPα modulates the podocyte cytoskeleton through influencing the phosphorylation of FAK at tyrosine residue 597. SIRPα 通过影响酪氨酸残基 597 处的 FAK 磷酸化来调节荚膜细胞的细胞骨架。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-18 DOI: 10.3724/abbs.2024198
Yuanyuan Xia, Yue Zhao, Jing Tian, Xue Yang, Yun Fan, Shihui Dong, Fan Yang, Mingchao Zhang, Caihong Zeng
{"title":"SIRPα modulates the podocyte cytoskeleton through influencing the phosphorylation of FAK at tyrosine residue 597.","authors":"Yuanyuan Xia, Yue Zhao, Jing Tian, Xue Yang, Yun Fan, Shihui Dong, Fan Yang, Mingchao Zhang, Caihong Zeng","doi":"10.3724/abbs.2024198","DOIUrl":"https://doi.org/10.3724/abbs.2024198","url":null,"abstract":"<p><p>Signal regulatory protein α (SIRPα) is recognized as a significant transmembrane protein within the glomeruli that is specifically localized in podocytes, where it plays a role in modulating downstream signaling pathways through phosphorylation. Upon tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM) within SIRPα, protein tyrosine phosphatases are recruited to facilitate the dephosphorylation of downstream signals. Nevertheless, the specific downstream signaling pathways affected by this mechanism have yet to be elucidated. In this study, phosphoproteomic analysis is conducted on podocytes with SIRPα deficiency to identify proteins whose phosphorylation is regulated by SIRPα and the associated signaling pathways in human podocytes. The results reveal significant alterations in biological processes related to cytoskeleton arrangement and cytoskeleton protein binding. Specifically, an increase in FAK tyrosine phosphorylation at Y576 is identified as a potentially crucial signal of the influence of SIRPα on the podocyte cytoskeleton. Our study suggests that SIRPα may facilitate podocyte cytoskeleton rearrangement and migration through the Src/FAK/p38 MAPK signaling pathway. For the first time, we discover increased level of SIRPα, which is strongly linked to urinary protein, in the urine of patients with nephrotic syndrome (NS). Additionally, an increase in urinary FAK level is observed in NS patients, which is positively correlated with both urinary protein level and urinary SIRPα level. These findings suggest that SIRPα and FAK may serve as promising biomarkers for podocytopathies.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functions and applications of RNA interference and small regulatory RNAs. RNA 干扰和小调控 RNA 的功能与应用。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-18 DOI: 10.3724/abbs.2024196
Xuezhu Feng, Shouhong Guang
{"title":"Functions and applications of RNA interference and small regulatory RNAs.","authors":"Xuezhu Feng, Shouhong Guang","doi":"10.3724/abbs.2024196","DOIUrl":"10.3724/abbs.2024196","url":null,"abstract":"<p><p>Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, developmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"119-130"},"PeriodicalIF":3.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of RSL3-induced ferroptotic cell death in HT22 cells: crucial role of protein disulfide isomerase. RSL3诱导HT22细胞铁凋亡的机制:蛋白二硫异构酶的关键作用
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-15 DOI: 10.3724/abbs.2024165
Ming-Jie Hou, Xuanqi Huang, Bao Ting Zhu
{"title":"Mechanism of RSL3-induced ferroptotic cell death in HT22 cells: crucial role of protein disulfide isomerase.","authors":"Ming-Jie Hou, Xuanqi Huang, Bao Ting Zhu","doi":"10.3724/abbs.2024165","DOIUrl":"10.3724/abbs.2024165","url":null,"abstract":"<p><p>Protein disulfide isomerase (PDI) was recently shown to be an upstream mediator of erastin-induced, glutathione depletion-associated ferroptosis through its catalysis of nitric oxide synthase (NOS) dimerization and nitric oxide (NO) accumulation. A recent study reported that RSL3, a known ferroptosis inducer and glutathione peroxidase 4 (GPX4) inhibitor, can inhibit thioredoxin reductase 1 (TrxR1). The present study seeks to test the hypothesis that RSL3 may, through its inhibition of TrxR1, facilitate PDI activation ( <i>i</i>. <i>e</i>., in a catalytically active, oxidized state), thereby enhancing RSL3-induced ferroptosis through NOS dimerization and NO accumulation. Using HT22 mouse neuronal cells as an <i>in vitro</i> model, we show that treatment of these cells with RSL3 strongly increases NOS protein levels and that PDI-mediated NOS dimerization is activated by RSL3, resulting in NO accumulation. Mechanistically, we find that PDI is activated in cells treated with RSL3 because of its inhibition of TrxR1, and the activated PDI then catalyzes NOS dimerization, which is followed by the accumulation of cellular NO, ROS and lipid-ROS and ultimately ferroptotic cell death. Genetic or pharmacological inhibition of PDI or TrxR1 partially abrogates RSL3-induced NOS activation and the subsequent accumulation of cellular NO, ROS/lipid-ROS, and ultimately ferroptosis in HT22 cells. The results of this study clearly show that PDI activation resulted from RSL3 inhibition of TrxR1 activity contributes crucially to RSL3-induced ferroptosis in a cell culture model through the PDI→NOS→NO→ROS/lipid-ROS pathway, in addition to its known inhibition of GPX4 activity.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in PIWI-piRNA function in female reproduction in mammals. 哺乳动物雌性生殖中 PIWI-piRNA 功能的研究进展。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-15 DOI: 10.3724/abbs.2024195
Xiaolong Lv, Hongdao Zhang, Ligang Wu
{"title":"Advances in PIWI-piRNA function in female reproduction in mammals.","authors":"Xiaolong Lv, Hongdao Zhang, Ligang Wu","doi":"10.3724/abbs.2024195","DOIUrl":"10.3724/abbs.2024195","url":null,"abstract":"<p><p>PIWI-interacting RNAs (piRNAs), which associate with PIWI clade Argonaute proteins to form piRNA-induced silencing complexes (piRISCs) in germline cells, are responsible for maintaining genomic integrity and reproductive function through transcriptional or post-transcriptional suppression of transposable elements and regulation of protein-coding genes. Recent discoveries of crucial PIWI-piRNA functions in oogenesis and embryogenesis in golden hamsters suggest an indispensable role in female fertility that has been obscured in the predominant mouse model of PIWI-piRNA pathway regulation. In particular, studies of piRNA expression dynamics, functional redundancies, and compositional variations across mammal species have advanced our understanding of piRNA functions in male and, especially, female reproduction. These findings further support the use of hamsters as a more representative model of piRNA biology in mammals. In addition to discussing these new perspectives, the current review also covers emerging directions for piRNA research, its implications for female fertility, and our fundamental understanding of reproductive mechanisms.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":"148-156"},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel mutation in SMARCB1 associated with adult Coffin-Siris syndrome and meningioma. 与成人科芬-西里斯综合征和脑膜瘤相关的SMARCB1新型突变。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-13 DOI: 10.3724/abbs.2024204
Zhenglong Guo, Jie Bai, Yang Liu, Xianwei Zhang, Wenke Yang, Jinming Wang, Yuwei Zhang, Hai Xiao, Bingtao Hao, Shixiu Liao
{"title":"A novel mutation in SMARCB1 associated with adult Coffin-Siris syndrome and meningioma.","authors":"Zhenglong Guo, Jie Bai, Yang Liu, Xianwei Zhang, Wenke Yang, Jinming Wang, Yuwei Zhang, Hai Xiao, Bingtao Hao, Shixiu Liao","doi":"10.3724/abbs.2024204","DOIUrl":"https://doi.org/10.3724/abbs.2024204","url":null,"abstract":"<p><p><i>SMARCB1</i> encodes a core subunit of the SWI/SNF chromatin remodeling complex, which plays a crucial role in the regulation of gene expression. Germline mutations in the <i>SMARCB1</i> gene have been linked to early childhood Coffin-Siris syndrome type 3 (CSS3), a rare congenital malformation syndrome characterized by severe developmental delay and intellectual disability. In this study, we report a family of two adult CSS3 patients with a novel missense <i>SMARCB1</i> mutation (c.1091A>C, p.Lys364Thr) identified through whole-exome sequencing (WES). Both patients exhibit selective difficulties in verbal learning and experience language delays. Additionally, the development of meningioma is confirmed in one of the patients. Mechanistic studies suggest that this missense mutation may abnormally activate the MAPK signaling pathway, which is implicated in the pathogenesis of tumor progression and neurodevelopmental disorders. This is the first reported case of a germline mutation in the <i>SMARCB1</i> gene associated with both CSS3 and meningioma, thereby expanding the phenotypic spectrum of SMARCB1-related disorders.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The peripheral Atf3 + neuronal population is responsible for nerve regeneration at the early stage of nerve injury revealed by single-cell RNA sequencing. 单细胞 RNA 测序揭示了外周 Atf3 + 神经元群体在神经损伤早期负责神经再生。
IF 3.3 2区 生物学
Acta biochimica et biophysica Sinica Pub Date : 2024-11-13 DOI: 10.3724/abbs.2024169
Li Liu, Junhui Chen, Wen Yin, Po Gao, Yinghui Fan, Daxiang Wen, Yingfu Jiao, Weifeng Yu
{"title":"The peripheral Atf3 <sup>+</sup> neuronal population is responsible for nerve regeneration at the early stage of nerve injury revealed by single-cell RNA sequencing.","authors":"Li Liu, Junhui Chen, Wen Yin, Po Gao, Yinghui Fan, Daxiang Wen, Yingfu Jiao, Weifeng Yu","doi":"10.3724/abbs.2024169","DOIUrl":"https://doi.org/10.3724/abbs.2024169","url":null,"abstract":"<p><p>Peripheral nerve injury (PNI) can transform primary somatosensory neurons to a regenerative state. However, the details of the transcriptomic changes associated with the nerve regeneration of somatosensory neurons remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) is conducted on mouse dorsal root ganglion (DRG) cells after the early stage of nerve injury on day 3 after chronic constriction injury (CCI). We observe that a novel CCI-induced neuronal population (CIP) emerge and express high levels of activating transcription factor ( <i>Atf3</i>), a neuronal injury marker. CIP neurons highly express regeneration-associated genes (RAGs) and are enriched in regeneration-related gene ontology (GO) terms, suggesting that these neurons can constitute a pro-regenerative population. Moreover, intercellular communication networks show that CIP neurons closely communicate with satellite glial cells (SGCs) and specifically transmit strong <i>Fgf3</i>- <i>Fgfr1</i> signaling to SGCs, which could initiate regeneration-associated transcriptional changes in SGCs. We also confirm that regenerative progress occurs at the early stage of nerve injury because immunohistochemistry shows that the expression of ATF3 is significantly increased beginning at 3 days post-CCI and decreased at 1 month post-CCI. Our bioinformatics analysis at single-cell resolution advances the knowledge of regenerative dynamic transcriptional changes in DRG cells after injury and the underlying molecular mechanisms involved.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信