Yu Meng Wang, Jing Yan, Sarah K. Williams, Richard Fairless, Hilmar Bading
{"title":"TwinF interface inhibitor FP802 prevents retinal ganglion cell loss in a mouse model of amyotrophic lateral sclerosis","authors":"Yu Meng Wang, Jing Yan, Sarah K. Williams, Richard Fairless, Hilmar Bading","doi":"10.1186/s40478-024-01858-0","DOIUrl":"https://doi.org/10.1186/s40478-024-01858-0","url":null,"abstract":"Motor neuron loss is well recognized in amyotrophic lateral sclerosis (ALS), but research on retinal ganglion cells (RGCs) is limited. Ocular symptoms are generally not considered classic ALS symptoms, although RGCs and spinal motor neurons share certain cell pathologies, including hallmark signs of glutamate neurotoxicity, which may be triggered by activation of extrasynaptic NMDA receptors (NMDARs). To explore potential novel strategies to prevent ALS-associated death of RGCs, we utilized inhibition of the TwinF interface, a new pharmacological principle that detoxifies extrasynaptic NMDARs by disrupting the NMDAR/TRPM4 death signaling complex. Using the ALS mouse model SOD1G93A, we found that the small molecule TwinF interface inhibitor FP802 prevents the loss of RGCs, improves pattern electroretinogram (pERG) performance, increases the retinal expression of Bdnf, and restores the retinal expression of the immediate early genes, Inhibin beta A and Npas4. Thus, FP802 not only prevents, as recently described, death of spinal motor neurons in SOD1G93A mice, but it also mitigates ALS-associated retinal damage. TwinF interface inhibitors have great potential for alleviating neuro-ophthalmologic symptoms in ALS patients and offer a promising new avenue for therapeutic intervention.","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"183 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olga Kim, Zach Sergi, Guangyang Yu, Kazutoshi Yamamoto, Martha Quezado, Zied Abdullaev, Danel R. Crooks, Shun Kishimoto, Qi Li, Peng Lu, Burchelle Blackman, Thorkell Andresson, Xiaolin Wu, Bao Tran, Jun S. Wei, Wei Zhang, Meili Zhang, Hua Song, Javed Khan, Murali C. Krishna, Jeffrey R. Brender, Jing Wu
{"title":"A patient-derived cell model for malignant transformation in IDH-mutant glioma","authors":"Olga Kim, Zach Sergi, Guangyang Yu, Kazutoshi Yamamoto, Martha Quezado, Zied Abdullaev, Danel R. Crooks, Shun Kishimoto, Qi Li, Peng Lu, Burchelle Blackman, Thorkell Andresson, Xiaolin Wu, Bao Tran, Jun S. Wei, Wei Zhang, Meili Zhang, Hua Song, Javed Khan, Murali C. Krishna, Jeffrey R. Brender, Jing Wu","doi":"10.1186/s40478-024-01860-6","DOIUrl":"https://doi.org/10.1186/s40478-024-01860-6","url":null,"abstract":"Malignant transformation (MT) is commonly seen in IDH-mutant gliomas. There has been a growing research interest in revealing its underlying mechanisms and intervening prior to MT at the early stages of the transforming process. Here we established a unique pair of matched 3D cell models: 403L, derived from a low-grade glioma (LGG), and 403H, derived from a high-grade glioma (HGG), by utilizing IDH-mutant astrocytoma samples from the same patient when the tumor was diagnosed as WHO grade 2 (tumor mutational burden (TMB) of 3.96/Mb) and later as grade 4 (TMB of 70.07/Mb), respectively. Both cell models were authenticated to a patient’s sample retaining endogenous expression of IDH1 R132H. DNA methylation profiles of the parental tumors referred to LGG and HGG IDH-mutant glioma clusters. The immunopositivity of SOX2, NESTIN, GFAP, OLIG2, and beta 3-Tubulin suggested the multilineage potential of both models. 403H was more prompt to cell invasion and developed infiltrative HGG in vivo. The differentially expressed genes (DEGs) from the RNA sequencing analysis revealed the tumor invasion and aggressiveness related genes exclusively upregulated in the 403H model. Pathway analysis showcased an enrichment of genes associated with epithelial-mesenchymal transition (EMT) and Notch signaling pathways in 403H and 403L, respectively. Mass spectrometry-based targeted metabolomics and hyperpolarized (HP) 1-13C pyruvate in-cell NMR analyses demonstrated significant alterations in the TCA cycle and fatty acid metabolism. Citrate, glutamine, and 2-HG levels were significantly higher in 403H. To our knowledge, this is the first report describing the development of a matched pair of 3D patient-derived cell models representative of MT and temozolomide (TMZ)-induced hypermutator phenotype (HMP) in IDH-mutant glioma, providing insights into genetic and metabolic changes during MT/HMP. This novel in vitro model allows further investigation of the mechanisms of MT at the cellular level. ","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"437 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Lian, Fangzhou Li, Cheng Zhou, Yan Yin, Yi Kang, Kaiteng Luo, Su Lui, Tao Li, Peilin Lu
{"title":"Protein phosphatase 2Cm-regulated branched-chain amino acid catabolic defect in dorsal root ganglion neurons drives pain sensitization","authors":"Nan Lian, Fangzhou Li, Cheng Zhou, Yan Yin, Yi Kang, Kaiteng Luo, Su Lui, Tao Li, Peilin Lu","doi":"10.1186/s40478-024-01856-2","DOIUrl":"https://doi.org/10.1186/s40478-024-01856-2","url":null,"abstract":"Maladaptive changes of metabolic patterns in the lumbar dorsal root ganglion (DRG) are critical for nociceptive hypersensitivity genesis. The accumulation of branched-chain amino acids (BCAAs) in DRG has been implicated in mechanical allodynia and thermal hyperalgesia, but the exact mechanism is not fully understood. This study aimed to explore how BCAA catabolism in DRG modulates pain sensitization. Wildtype male mice were fed a high-fat diet (HFD) for 8 weeks. Adult PP2Cmfl/fl mice of both sexes were intrathecally injected with pAAV9-hSyn-Cre to delete the mitochondrial targeted 2 C-type serine/threonine protein phosphatase (PP2Cm) in DRG neurons. Here, we reported that BCAA catabolism was impaired in the lumbar 4–5 (L4-L5) DRGs of mice fed a high-fat diet (HFD). Conditional deletion of PP2Cm in DRG neurons led to mechanical allodynia, heat and cold hyperalgesia. Mechanistically, the genetic knockout of PP2Cm resulted in the upregulation of C-C chemokine ligand 5/C-C chemokine receptor 5 (CCL5/CCR5) axis and an increase in transient receptor potential ankyrin 1 (TRPA1) expression. Blocking the CCL5/CCR5 signaling or TRPA1 alleviated pain behaviors induced by PP2Cm deletion. Thus, targeting BCAA catabolism in DRG neurons may be a potential management strategy for pain sensitization.","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"22 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oleksandr Gakh, Jordan M. Wilkins, Yong Guo, Bogdan F. Popescu, Stephen D. Weigand, Alicja Kalinowska-Lyszczarz, Claudia F. Lucchinetti
{"title":"Infrared spectral profiling of demyelinating activity in multiple sclerosis brain tissue","authors":"Oleksandr Gakh, Jordan M. Wilkins, Yong Guo, Bogdan F. Popescu, Stephen D. Weigand, Alicja Kalinowska-Lyszczarz, Claudia F. Lucchinetti","doi":"10.1186/s40478-024-01854-4","DOIUrl":"https://doi.org/10.1186/s40478-024-01854-4","url":null,"abstract":"Multiple sclerosis (MS) is a leading cause of non-traumatic disability in young adults. The highly dynamic nature of MS lesions has made them difficult to study using traditional histopathology due to the specificity of current stains. This requires numerous stains to track and study demyelinating activity in MS. Thus, we utilized Fourier transform infrared (FTIR) spectroscopy to generate holistic biomolecular profiles of demyelinating activities in MS brain tissue. Multivariate analysis can differentiate MS tissue from controls. Analysis of the absorbance spectra shows profound reductions of lipids, proteins, and phosphate in white matter lesions. Changes in unsaturated lipids and lipid chain length indicate oxidative damage in MS brain tissue. Altered lipid and protein structures suggest changes in MS membrane structure and organization. Unique carbohydrate signatures are seen in MS tissue compared to controls, indicating altered metabolic activities. Cortical lesions had increased olefinic lipid content and abnormal membrane structure in normal appearing MS cortex compared to controls. Our results suggest that FTIR spectroscopy can further our understanding of lesion evolution and disease mechanisms in MS paving the way towards improved diagnosis, prognosis, and development of novel therapeutics.","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"19 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasie Mate de Gerando, Anita Khasnavis, Lindsay A. Welikovitch, Harshil Bhavsar, Calina Glynn, Noe Quittot, Romain Perbet, Bradley T. Hyman
{"title":"Aqueous extractable nonfibrillar and sarkosyl extractable fibrillar Alzheimer’s disease tau seeds have distinct properties","authors":"Anastasie Mate de Gerando, Anita Khasnavis, Lindsay A. Welikovitch, Harshil Bhavsar, Calina Glynn, Noe Quittot, Romain Perbet, Bradley T. Hyman","doi":"10.1186/s40478-024-01849-1","DOIUrl":"https://doi.org/10.1186/s40478-024-01849-1","url":null,"abstract":"Pathological tau fibrils in progressive supranuclear palsy, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer’s disease each have unique conformations, and post-translational modifications that correlate with unique disease characteristics. However, within Alzheimer’s disease (AD), both fibrillar (sarkosyl insoluble (AD SARK tau)), and nonfibrillar (aqueous extractable high molecular weight (AD HMW tau)) preparations have been suggested to be seed-competent. We now explore if these preparations are similar or distinct in their in vivo seeding characteristics. Using an in vivo amplification and time-course paradigm we demonstrate that, for AD HMW and AD SARK tau species, the amplified material is biochemically similar to the original sample. The HMW and SARK materials also show different clearance, propagation kinetics, and propagation patterns. These data indicate the surprising co-occurrence of multiple distinct tau species within the same AD brain, supporting the idea that multiple tau conformers – both fibrillar and nonfibrillar- can impact phenotype in AD.","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"62 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pavol Zelina, Anna Aster de Ruiter, Christy Kolsteeg, Ilona van Ginneken, Harmjan R Vos, Laura F Supiot, Boudewijn M T Burgering, Frank J Meye, Jan H Veldink, Leonard H van den Berg, R Jeroen Pasterkamp
{"title":"ALS-associated C21ORF2 variant disrupts DNA damage repair, mitochondrial metabolism, neuronal excitability and NEK1 levels in human motor neurons.","authors":"Pavol Zelina, Anna Aster de Ruiter, Christy Kolsteeg, Ilona van Ginneken, Harmjan R Vos, Laura F Supiot, Boudewijn M T Burgering, Frank J Meye, Jan H Veldink, Leonard H van den Berg, R Jeroen Pasterkamp","doi":"10.1186/s40478-024-01852-6","DOIUrl":"10.1186/s40478-024-01852-6","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"144"},"PeriodicalIF":6.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julieann C Lee, Selene C Koo, Larissa V Furtado, Alex Breuer, Mohammad K Eldomery, Asim K Bag, Pat Stow, Gary Rose, Trisha Larkin, Rick Sances, Bette K Kleinschmidt-DeMasters, Jenna L Bodmer, Nicholas Willard, Murat Gokden, Sonika Dahiya, Kaleigh Roberts, Kelsey C Bertrand, Daniel C Moreira, Giles W Robinson, Jun Qin Mo, David W Ellison, Brent A Orr
{"title":"Concurrent ependymal and ganglionic differentiation in a subset of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement.","authors":"Julieann C Lee, Selene C Koo, Larissa V Furtado, Alex Breuer, Mohammad K Eldomery, Asim K Bag, Pat Stow, Gary Rose, Trisha Larkin, Rick Sances, Bette K Kleinschmidt-DeMasters, Jenna L Bodmer, Nicholas Willard, Murat Gokden, Sonika Dahiya, Kaleigh Roberts, Kelsey C Bertrand, Daniel C Moreira, Giles W Robinson, Jun Qin Mo, David W Ellison, Brent A Orr","doi":"10.1186/s40478-024-01809-9","DOIUrl":"10.1186/s40478-024-01809-9","url":null,"abstract":"<p><p>Neuroepithelial tumors with fusion of PLAGL1 or amplification of PLAGL1/PLAGL2 have recently been described often with ependymoma-like or embryonal histology respectively. To further evaluate emerging entities with PLAG-family genetic alterations, the histologic, molecular, clinical, and imaging features are described for 8 clinical cases encountered at St. Jude (EWSR1-PLAGL1 fusion n = 6; PLAGL1 amplification n = 1; PLAGL2 amplification n = 1). A histologic feature observed on initial resection in a subset (4/6) of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement was the presence of concurrent ependymal and ganglionic differentiation. This ranged from prominent clusters of ganglion cells within ependymoma/subependymoma-like areas, to interspersed ganglion cells of low to moderate frequency among otherwise ependymal-like histology, or focal areas with a ganglion cell component. When present, the combination of ependymal-like and ganglionic features within a supratentorial neuroepithelial tumor may raise consideration for an EWSR1-PLAGL1 fusion, and prompt initiation of appropriate molecular testing such as RNA sequencing and methylation profiling. One of the EWSR1-PLAGL1 fusion cases showed subclonal INI1 loss in a region containing small clusters of rhabdoid/embryonal cells, and developed a prominent ganglion cell component on recurrence. As such, EWSR1-PLAGL1 neuroepithelial tumors are a tumor type in which acquired inactivation of SMARCB1 and development of AT/RT features may occur and lead to clinical progression. In contrast, the PLAGL2 and PLAGL1 amplified cases showed either embryonal histology or contained an embryonal component with a significant degree of desmin staining, which could also serve to raise consideration for a PLAG entity when present. Continued compilation of associated clinical data and histopathologic findings will be critical for understanding emerging entities with PLAG-family genetic alterations.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"143"},"PeriodicalIF":6.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keiko Taniguchi-Ponciano, Silvia Hinojosa-Alvarez, Jesus Hernandez-Perez, Rocio A Chavez-Santoscoy, Ilan Remba-Shapiro, Gerardo Guinto, Erika Magallon-Gayon, Benjamin Telles-Ramirez, Rodrigo Ponce de Leon-Conconi, Sandra Vela-Patiño, Sergio Andonegui-Elguera, Amayrani Cano-Zaragoza, Florencia Martinez-Mendoza, Jacobo Kerbel, Marco Loza-Mejia, Juan Rodrigo-Salazar, Alonso Mendez-Perez, Cristina Aguilar-Flores, Antonieta Chavez-Gonzalez, Elenka Ortiz-Reyes, Erick Gomez-Apo, Laura C Bonifaz, Daniel Marrero-Rodriguez, Moises Mercado
{"title":"Longitudinal multiomics analysis of aggressive pituitary neuroendocrine tumors: comparing primary and recurrent tumors from the same patient, reveals genomic stability and heterogeneous transcriptomic profiles with alterations in metabolic pathways.","authors":"Keiko Taniguchi-Ponciano, Silvia Hinojosa-Alvarez, Jesus Hernandez-Perez, Rocio A Chavez-Santoscoy, Ilan Remba-Shapiro, Gerardo Guinto, Erika Magallon-Gayon, Benjamin Telles-Ramirez, Rodrigo Ponce de Leon-Conconi, Sandra Vela-Patiño, Sergio Andonegui-Elguera, Amayrani Cano-Zaragoza, Florencia Martinez-Mendoza, Jacobo Kerbel, Marco Loza-Mejia, Juan Rodrigo-Salazar, Alonso Mendez-Perez, Cristina Aguilar-Flores, Antonieta Chavez-Gonzalez, Elenka Ortiz-Reyes, Erick Gomez-Apo, Laura C Bonifaz, Daniel Marrero-Rodriguez, Moises Mercado","doi":"10.1186/s40478-024-01796-x","DOIUrl":"10.1186/s40478-024-01796-x","url":null,"abstract":"<p><p>Pituitary neuroendocrine tumors (PitNET) represent the vast majority of sellar masses. Some behave aggressively, growing rapidly and invading surrounding tissues, with high rates of recurrence and resistance to therapy. Our aim was to establish patterns of genomic, transcriptomic and methylomic evolution throughout time in primary and recurrent tumors from the same patient. Therefore, we performed transcriptome- and exome-sequencing and methylome microarrays of aggressive, primary, and recurrent PitNET from the same patient. Primary and recurrent tumors showed a similar exome profile, potentially indicating a stable genome over time. In contrast, the transcriptome of primary and recurrent PitNET was dissimilar. Gonadotroph, silent corticotroph, as well as metastatic corticotroph and a somatotroph PitNET expressed genes related to fatty acid biosynthesis and metabolism, phosphatidylinositol signaling, glycerophospholipid and phospholipase D signaling, respectively. Diacylglycerol kinase gamma (DGKG), a key enzyme in glycerophospholipid metabolism and phosphatidylinositol signaling pathways, was differentially expressed between primary and recurrent PitNET. These alterations did not seem to be regulated by DNA methylation, but rather by several transcription factors. Molecular docking showed that dasatinib, a small molecule tyrosine kinase inhibitor used in the treatment of chronic lymphocytic and acute lymphoblastic leukemia, could target DGKG. Dasatinib induced apoptosis and decreased proliferation in GH3 cells. Our data indicate that pituitary tumorigenesis could be driven by transcriptomically heterogeneous clones, and we describe alternative pharmacological therapies for aggressive and recurrent PitNET.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"142"},"PeriodicalIF":6.2,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristina Bellotti, Samudyata Samudyata, Sebastian Thams, Carl M Sellgren, Elham Rostami
{"title":"Organoids and chimeras: the hopeful fusion transforming traumatic brain injury research.","authors":"Cristina Bellotti, Samudyata Samudyata, Sebastian Thams, Carl M Sellgren, Elham Rostami","doi":"10.1186/s40478-024-01845-5","DOIUrl":"10.1186/s40478-024-01845-5","url":null,"abstract":"<p><p>Research in the field of traumatic brain injury has until now heavily relied on the use of animal models to identify potential therapeutic approaches. However, a long series of failed clinical trials has brought many scientists to question the translational reliability of pre-clinical results obtained in animals. The search for an alternative to conventional models that better replicate human pathology in traumatic brain injury is thus of the utmost importance for the field. Recently, orthotopic xenotransplantation of human brain organoids into living animal models has been achieved. This review summarizes the existing literature on this new method, focusing on its potential applications in preclinical research, both in the context of cell replacement therapy and disease modelling. Given the obvious advantages of this approach to study human pathologies in an in vivo context, we here critically review its current limitations while considering its possible applications in traumatic brain injury research.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"141"},"PeriodicalIF":6.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Pan, Jaume Fores-Martos, Claire Delpirou Nouh, Tanner D Jensen, Kristen Vallejo, Romain Cayrol, Saman Ahmadian, Euan A Ashley, Michael D Greicius, Inma Cobos
{"title":"Deciphering glial contributions to CSF1R-related disorder via single-nuclear transcriptomic profiling: a case study.","authors":"Jie Pan, Jaume Fores-Martos, Claire Delpirou Nouh, Tanner D Jensen, Kristen Vallejo, Romain Cayrol, Saman Ahmadian, Euan A Ashley, Michael D Greicius, Inma Cobos","doi":"10.1186/s40478-024-01853-5","DOIUrl":"10.1186/s40478-024-01853-5","url":null,"abstract":"<p><p>CSF1R-related disorder (CSF1R-RD) is a neurodegenerative condition that predominantly affects white matter due to genetic alterations in the CSF1R gene, which is expressed by microglia. We studied an elderly man with a hereditary, progressive dementing disorder of unclear etiology. Standard genetic testing for leukodystrophy and other neurodegenerative conditions was negative. Brain autopsy revealed classic features of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), including confluent white matter degeneration with axonal spheroids and pigmented glial cells in the affected white matter, consistent with CSF1R-RD. Subsequent long-read sequencing identified a novel deletion in CSF1R that was not detectable with short-read exome sequencing. To gain insight into potential mechanisms underlying white matter degeneration in CSF1R-RD, we studied multiple brain regions exhibiting varying degrees of white matter pathology. We found decreased CSF1R transcript and protein across brain regions, including intact white matter. Single nuclear RNA sequencing (snRNAseq) identified two disease-associated microglial cell states: lipid-laden microglia (expressing GPNMB, ATG7, LGALS1, LGALS3) and inflammatory microglia (expressing IL2RA, ATP2C1, FCGBP, VSIR, SESN3), along with a small population of CD44<sup>+</sup> peripheral monocyte-derived macrophages exhibiting migratory and phagocytic signatures. GPNMB<sup>+</sup> lipid-laden microglia with ameboid morphology represented the end-stage disease microglia state. Disease-associated oligodendrocytes exhibited cell stress signatures and dysregulated apoptosis-related genes. Disease-associated oligodendrocyte precursor cells (OPCs) displayed a failure in their differentiation into mature myelin-forming oligodendrocytes, as evidenced by upregulated LRP1, PDGFRA, SOX5, NFIA, and downregulated NKX2-2, NKX6.2, SOX4, SOX8, TCF7L2, YY1, ZNF488. Overall, our findings highlight microglia-oligodendroglia crosstalk in demyelination, with CSF1R dysfunction promoting phagocytic and inflammatory microglia states, an arrest in OPC differentiation, and oligodendrocyte depletion.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"139"},"PeriodicalIF":6.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}