Zita Reisz, Rita Pereira, Smitha Nevis, Alan Mackay, Leena Bhaw, Yura Grabovska, Ross Laxton, Valeria Molinari, Anna Burford, Barnaby Clark, Cristina Bleil, Bassel Zebian, Erika Pace, Annette Weiser, Fernando Carceller, Lynley Marshall, Andrew King, Istvan Bodi, Safa Al-Sarraj, Chris Jones, Matthew Clarke
{"title":"An exceptionally rare case of a diffuse midline glioma with concomitant H3.1 K27M and G34R mutations in the HIST1H3C (H3C3) gene.","authors":"Zita Reisz, Rita Pereira, Smitha Nevis, Alan Mackay, Leena Bhaw, Yura Grabovska, Ross Laxton, Valeria Molinari, Anna Burford, Barnaby Clark, Cristina Bleil, Bassel Zebian, Erika Pace, Annette Weiser, Fernando Carceller, Lynley Marshall, Andrew King, Istvan Bodi, Safa Al-Sarraj, Chris Jones, Matthew Clarke","doi":"10.1186/s40478-024-01899-5","DOIUrl":"10.1186/s40478-024-01899-5","url":null,"abstract":"<p><p>Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied. Histology showed diffusely infiltrating pleomorphic astrocytes, multinucleated cells, and conspicuous mitotic activity; the diagnosis was DMG, H3 K27-altered (immunohistochemistry: H3K27me3 loss, H3K27M positivity). DNA methylation profiling (Illumina EPIC BeadArrays, brain tumour classifier (MNP v12.5 R package)) classified the tumour as 'DMG, H3 K27-altered' (calibrated score = 0.99). Further molecular studies (whole exome, whole genome sequencing) revealed concurrent H3.1 K27M and G34R mutations (clonal, in the same reads) of H3C3, FGF11 and PIK3CA somatic variants, and a pathogenic germline NBN variant. The RNAseq profile clustered with H3K27M-mutant tumours. A patient-derived cell culture was established enabling unbiased in vitro drug screening; no selective sensitivities were identified. Chromatin immunoprecipitation assays with sequencing (ChIP-seq; H3K27ac, H3K27me3, H3K36me3, RNApol2 marks) showed features in keeping with DMG H3 K27M-mutant tumours (H3K27ac loci including OLIG2, IRX1/2, PKDCC). The patient was treated with adjuvant radiotherapy, but progressed and passed away 13 months post-diagnosis. This case is an exceptionally rare, complex variant of histone-mutant paediatric HGG, illustrating that the H3.1 K27M mutation demonstrates a dominance over the molecular and clinical profiles compared to G34R, and highlights the importance of broad molecular profiling to identify such examples for further study.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"7"},"PeriodicalIF":6.2,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jenny C Kienzler, Erick M Contreras, Janet Treger, Linda M Liau, Geoffrey C Owens, Robert M Prins
{"title":"Transcriptome analysis of novel B16 melanoma metastatic variants generated by serial intracarotid artery injection.","authors":"Jenny C Kienzler, Erick M Contreras, Janet Treger, Linda M Liau, Geoffrey C Owens, Robert M Prins","doi":"10.1186/s40478-025-01924-1","DOIUrl":"10.1186/s40478-025-01924-1","url":null,"abstract":"<p><p>The incidence of brain metastases (BrM) in patients with metastatic melanoma is reported to be 30-50% and constitutes the third most frequent BrM after breast and renal cancers. Treatment strategies including surgical resection, stereotactic radiation, and immunotherapy have improved clinical response rates and overall survival, but the changes that occur in circulating melanoma cells to promote invasion of the brain are not fully understood. To investigate brain tropism, we generated new variants of the B16 mouse melanoma model by serially passaging B16 cells through the brain of immune competent syngeneic C57BL/6 mice. Cells were injected into the right carotid artery and recovered from the brain after the mice had reached the study endpoint due to tumor burden, then expanded in vitro and reinjected. We compared the transcriptomes of 4th generation B16 cell populations from separate lineages with the founder B16-F0 cells. Gene set enrichment analysis (GSEA) of differentially expressed protein coding genes revealed that cells isolated from the brain as well as from the lung and meninges expressed higher levels of genes associated with an epithelial to mesenchymal transition (EMT), upregulation of the KRAS signaling pathway, and a metastasis aggressiveness gene signature associated with poor survival in melanoma patients. Principal component analysis of differentially expressed genes showed that 4th generation melanoma cells isolated from the brain, lung and meninges from one lineage were distinct from those of the other three lineages. Among the differentially expressed genes, transcript levels of several genes, including Itgb2, Rftn2, and Kcnn4, were significantly higher in all cell populations that comprised this lineage compared with all cell populations from the other three lineages. In conclusion, we have derived an aggressive, highly brain metastatic B16 variant associated with leptomeningeal disease by serially passaging cells in vivo.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"10"},"PeriodicalIF":6.2,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niclas Skarne, Rochelle C J D'Souza, Helen M Palethorpe, Kylah A Bradbrook, Guillermo A Gomez, Bryan W Day
{"title":"Personalising glioblastoma medicine: explant organoid applications, challenges and future perspectives.","authors":"Niclas Skarne, Rochelle C J D'Souza, Helen M Palethorpe, Kylah A Bradbrook, Guillermo A Gomez, Bryan W Day","doi":"10.1186/s40478-025-01928-x","DOIUrl":"10.1186/s40478-025-01928-x","url":null,"abstract":"<p><p>Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches. Recent technological developments have permitted the maintenance, expansion and cryopreservation of GBM explant organoid (GBO) tissue. GBOs represent a translational leap forward and are currently the state-of-the-art in 3D in vitro culture system, retaining brain cancer heterogeneity, and transiently maintaining the immune infiltrate and tumour microenvironment (TME). Here, we provide a review of existing brain cancer organoid technologies, in vivo xenograft approaches, evaluate in-detail the key advantages and limitations of this rapidly emerging technology, and consider solutions to overcome these difficulties. GBOs currently hold significant promise, with the potential to emerge as the key translational tool to synergise and enhance next-generation omics efforts and guide personalised medicine approaches for brain cancer patients into the future.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"6"},"PeriodicalIF":6.2,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantin Okonechnikov, David R Ghasemi, Daniel Schrimpf, Svenja Tonn, Martin Mynarek, Jan Koster, Till Milde, Tuyu Zheng, Philipp Sievers, Felix Sahm, David T W Jones, Andreas von Deimling, Stefan M Pfister, Marcel Kool, Kristian W Pajtler, Andrey Korshunov
{"title":"Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling.","authors":"Konstantin Okonechnikov, David R Ghasemi, Daniel Schrimpf, Svenja Tonn, Martin Mynarek, Jan Koster, Till Milde, Tuyu Zheng, Philipp Sievers, Felix Sahm, David T W Jones, Andreas von Deimling, Stefan M Pfister, Marcel Kool, Kristian W Pajtler, Andrey Korshunov","doi":"10.1186/s40478-024-01921-w","DOIUrl":"https://doi.org/10.1186/s40478-024-01921-w","url":null,"abstract":"<p><p>Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet. Here, we performed methylation-based DNA profiling and transcriptome RNA sequencing analysis of 80 ST-EPN ZFTA-RELA investigating the clinical significance of various molecular patterns. The principal types of ZFTA-RELA fusions, based on breakpoint location, demonstrated no significant correlations with clinical outcomes. Multigene analysis disclosed 1892 survival-associated genes, and a metagene set of 100 genes subdivided ST-EPN ZFTA-RELA into favorable and unfavorable transcriptome subtypes composed of different cell subpopulations as detected by deconvolution analysis. BGN (biglycan) was identified as the top-ranked survival-associated gene and high BGN expression levels were associated with poor survival (Hazard Ratio 17.85 for PFS and 45.48 for OS; log-rank; p-value < 0.01). Furthermore, BGN immunopositivity was identified as a strong prognostic indicator of poor survival in ST-EPN, and this finding was confirmed in an independent validation set of 56 samples. Our results indicate that integrating BGN expression (at mRNA and/or protein level) into risk stratification models may improve ST-EPN ZFTA-RELA outcome prediction. Therefore, gene and/or protein expression analyses for this molecular marker could be adopted for ST-EPN ZFTA-RELA prognostication and may help assign patients to optimal therapies in prospective clinical trials.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"4"},"PeriodicalIF":6.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yin Jin, Apostolia Topaloudi, Sudhanshu Shekhar, Guangxin Chen, Alicia Nicole Scott, Bryce David Colon, Petros Drineas, Chris Rochet, Peristera Paschou
{"title":"Neuropathology-based approach reveals novel Alzheimer's Disease genes and highlights female-specific pathways and causal links to disrupted lipid metabolism: insights into a vicious cycle.","authors":"Yin Jin, Apostolia Topaloudi, Sudhanshu Shekhar, Guangxin Chen, Alicia Nicole Scott, Bryce David Colon, Petros Drineas, Chris Rochet, Peristera Paschou","doi":"10.1186/s40478-024-01909-6","DOIUrl":"https://doi.org/10.1186/s40478-024-01909-6","url":null,"abstract":"<p><p>Dementia refers to an umbrella phenotype of many different underlying pathologies with Alzheimer's disease (AD) being the most common type. Neuropathological examination remains the gold standard for accurate AD diagnosis, however, most that we know about AD genetics is based on Genome-Wide Association Studies (GWAS) of clinically defined AD. Such studies have identified multiple AD susceptibility variants with a significant portion of the heritability unexplained and highlighting the phenotypic and genetic heterogeneity of the clinically defined entity. Furthermore, despite women's increased susceptibility to dementia, there is a lack of sex-specific genetic studies and understanding of sex-specific background for the disorder. Here, we aim to tackle the heterogeneity of AD by specifically concentrating on neuropathological features and pursuing sex-specific analysis. We bring together 14 different genomic and neuropathology datasets (6960 individuals) and we integrate our GWAS findings with transcriptomic and phenotypic data aiming to also identify biomarkers for AD progression. We uncover novel genetic associations to AD neuropathology, including BIN1 and OPCML. Our sex-specific analysis points to a role for BIN1 specifically in women as well as novel AD loci including QRFPR and SGCZ. Post-GWAS analyses illuminate the functional and biological mechanisms underlying AD and reveal sex-specific differences. Finally, through PheWAS and Mendelian Randomization analysis, we identify causal links with AD neuropathology pointing to disrupted lipid metabolism, as well as impaired peripheral immune response and liver dysfunction as part of a vicious cycle that fuels neurodegeneration.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"1"},"PeriodicalIF":6.2,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Liu, Ye Sun, Baodong He, Haodong Chen, Lijing Wang, Gaojie Wang, Kang Zhang, Ximeng Zhao, Xinzhe Zhang, Dongchao Shen, Xue Zhang, Liying Cui
{"title":"Gain-of-function ANXA11 mutation cause late-onset ALS with aberrant protein aggregation, neuroinflammation and autophagy impairment.","authors":"Qing Liu, Ye Sun, Baodong He, Haodong Chen, Lijing Wang, Gaojie Wang, Kang Zhang, Ximeng Zhao, Xinzhe Zhang, Dongchao Shen, Xue Zhang, Liying Cui","doi":"10.1186/s40478-024-01919-4","DOIUrl":"https://doi.org/10.1186/s40478-024-01919-4","url":null,"abstract":"<p><p>Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement. To elucidate the pathogenesis, we developed a knock-in mouse model carrying the p.P36R mutation. In both heterozygous and homozygous mutant mice, ANXA11 protein levels were comparable to those in wild-type. Both groups exhibited late-onset motor dysfunction at approximately 10 months of age, with similar survival rates to wild-type (> 24 months) and no signs of dementia. Pathological analysis revealed early abnormal aggregates in spinal cord motor neurons, cortical neurons, and muscle cells of homozygous mice. From 2 months of age, we observed mislocalized ANXA11 aggregates, SQSTM1/p62-positive inclusions, and cytoplasmic TDP-43 mislocalization, which intensified with disease progression. Importantly, mutant ANXA11 co-aggregated with TDP-43 and SQSTM1/p62-positive inclusions. Electron microscopy of the gastrocnemius muscle uncovered myofibrillar abnormalities, including sarcomeric disorganization, Z-disc dissolution, and subsarcolemmal electron-dense structures within autophagic vacuoles. Autophagic flux, initially intact at 2 months, was impaired by 9 months, as evidenced by decreased Beclin-1 and LC3BII/I levels and increased SQSTM1/p62 expression, coinciding with mTORC1 hyperactivation. Significant motor neuron loss and neuroinflammation were detected by 9 months, with marked muscle dystrophy apparent by 12 months compared to wild-type controls. These findings implicate the gain-of-function ANXA11 mutation drives late-onset motor neuron disease by early presymptomatic proteinopathy, progressive neuronal degeneration, neuroinflammation, and autophagic dysfunction.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"2"},"PeriodicalIF":6.2,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jixiang Zeng, Chunmei Luo, Yang Jiang, Tao Hu, Bixia Lin, Yuanfang Xie, Jiao Lan, Jifei Miao
{"title":"Decoding TDP-43: the molecular chameleon of neurodegenerative diseases.","authors":"Jixiang Zeng, Chunmei Luo, Yang Jiang, Tao Hu, Bixia Lin, Yuanfang Xie, Jiao Lan, Jifei Miao","doi":"10.1186/s40478-024-01914-9","DOIUrl":"10.1186/s40478-024-01914-9","url":null,"abstract":"<p><p>TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis. Particular emphasis is placed on recent discoveries regarding TDP-43's involvement in DNA interactions and chromatin dynamics, highlighting its broader impact on gene expression and genome stability. The review also examines the complex pathogenesis of TDP-43-related disorders, discussing the protein's propensity for aggregation, its effects on mitochondrial function, and its non-cell autonomous impacts on glial cells. We provide an in-depth analysis of TDP-43 pathology across various neurodegenerative conditions, from well-established associations in ALS and FTLD to emerging roles in diseases such as Huntington's disease and Niemann-Pick C disease. The potential of TDP-43 as a therapeutic target is explored, with a focus on recent developments in targeting cryptic exon inclusion and other TDP-43-mediated processes. This review synthesizes current knowledge on TDP-43 biology and pathology, offering insights into the protein's central role in neurodegeneration and highlighting promising avenues for future research and therapeutic interventions.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"205"},"PeriodicalIF":6.2,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mishal Rao, Ziming Luo, Chia-Chun Liu, Chi-Yu Chen, Shining Wang, Michael Nahmou, Bogdan Tanasa, Aman Virmani, Leah Byrne, Jeffrey L Goldberg, José-Alain Sahel, Kun-Che Chang
{"title":"Tppp3 is a novel molecule for retinal ganglion cell identification and optic nerve regeneration.","authors":"Mishal Rao, Ziming Luo, Chia-Chun Liu, Chi-Yu Chen, Shining Wang, Michael Nahmou, Bogdan Tanasa, Aman Virmani, Leah Byrne, Jeffrey L Goldberg, José-Alain Sahel, Kun-Che Chang","doi":"10.1186/s40478-024-01917-6","DOIUrl":"10.1186/s40478-024-01917-6","url":null,"abstract":"<p><p>Mammalian central nervous system (CNS) axons cannot spontaneously regenerate after injury, creating an unmet need to identify molecular regulators to promote axon regeneration and reduce the lasting impact of CNS injuries. While tubulin polymerization promoting protein family member 3 (Tppp3) is known to promote axon outgrowth in amphibians, its role in mammalian axon regeneration remains unknown. Here we investigated Tppp3 in retinal ganglion cells (RGCs) neuroprotection and axonal regeneration using an optic nerve crush (ONC) model in the rodent. Single-cell RNA sequencing identified the expression of Tppp3 in RGCs of mice, macaques, and humans. Tppp3 overexpression enhanced neurite outgrowth in mouse primary RGCs in vitro, promoted axon regeneration, and improved RGC survival after ONC. Bulk RNA sequencing indicated that Tppp3 overexpression upregulates axon regeneration genes such as Bmp4 and neuroinflammatory pathways. Our findings advance regenerative medicine by developing a new therapeutic strategy for RGC neuroprotection and axon regeneration.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"204"},"PeriodicalIF":6.2,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily G Thompson, Olivia Spead, Suleyman C Akerman, Carrie Curcio, Benjamin L Zaepfel, Erica R Kent, Thomas Philips, Balaji G Vijayakumar, Anna Zacco, Weibo Zhou, Guhan Nagappan, Jeffrey D Rothstein
{"title":"A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in an AAV-C9ORF72 (G<sub>4</sub>C<sub>2</sub>)<sub>66</sub> mouse model.","authors":"Emily G Thompson, Olivia Spead, Suleyman C Akerman, Carrie Curcio, Benjamin L Zaepfel, Erica R Kent, Thomas Philips, Balaji G Vijayakumar, Anna Zacco, Weibo Zhou, Guhan Nagappan, Jeffrey D Rothstein","doi":"10.1186/s40478-024-01911-y","DOIUrl":"10.1186/s40478-024-01911-y","url":null,"abstract":"<p><p>The G<sub>4</sub>C<sub>2</sub> hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G<sub>4</sub>C<sub>2</sub> hexanucleotide repeats. The model displays key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis. However, the AAV-(G<sub>4</sub>C<sub>2</sub>)<sub>66</sub> mouse model in this study has marginal neurodegeneration with negligible neuronal loss, or clinical deficits. Human C9orf72 is typically associated with altered TAR DNA-binding protein (TDP-43) function, yet studies of this rodent model revealed no significant evidence of TDP-43 dysfunction. While our findings indicate and support that this is a highly valuable robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G<sub>4</sub>C<sub>2</sub>) repeat driven DPR pathology, it is not suitable for investigating the development of disease- associated TDP-43 dysfunction or clinical impairment. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"203"},"PeriodicalIF":6.2,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}