Martin V Hamann, Shweta Godbole, Maisha Adiba, Sabrina M Leddy, Jelena Navolić, Ghazaleh Tabatabai, Daniel J Merk, Ulrike C Lange, Julia E Neumann
{"title":"Expression of LTR and LINE1 transposable elements defines atypical teratoid/rhabdoid tumor subtypes.","authors":"Martin V Hamann, Shweta Godbole, Maisha Adiba, Sabrina M Leddy, Jelena Navolić, Ghazaleh Tabatabai, Daniel J Merk, Ulrike C Lange, Julia E Neumann","doi":"10.1186/s40478-025-02078-w","DOIUrl":null,"url":null,"abstract":"<p><p>Atypical teratoid rhabdoid tumors (ATRTs) are aggressive central nervous system tumors mainly affecting young children. Extensive molecular characterization based on gene expression and DNA methylation patterns has solidly established three major ATRT subtypes (MYC, SHH and TYR), which show distinct clinical features, setting the basis for more effective, targeted treatment regimens. Transcriptional activity of transposable elements (TEs), like LINE1s and LTRs, is tightly linked with human cancers as a direct consequence of lifting epigenetic repression over TEs. The sole recurrent biallelic loss-of-function mutation in SMARCB1 in ATRTs, a core component of the SWI/SNF chromatin remodeling complex, raises the question of how TE transcription contributes to ATRT development. Here, we comprehensively investigate the transcriptional profiles of 1.9M LINE1 and LTR elements across ATRT subtypes in primary human samples. We find TE transcription profiles allow sample stratification into ATRT subtypes. The TE activity signature in the ATRT-MYC subtype is unique, setting these tumors apart from SHH and TYR ATRTs. More specifically, ATRT-MYC show broadly reduced transcript levels of LINE1 and ERVL-MaLR subfamilies. ATRT-MYC also displayed significantly less LTR and LINE1 loci with bidirectional promoter activity. Furthermore, we identify 849 differentially transcribed TEs in primary samples, which are predictive towards established ATRT-SHH and -MYC cell line models. In summary, including TE transcription profiles into the molecular characterization of ATRTs might reveal new tumor vulnerabilities leading to novel therapeutic interventions, such as immunotherapy.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"159"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02078-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atypical teratoid rhabdoid tumors (ATRTs) are aggressive central nervous system tumors mainly affecting young children. Extensive molecular characterization based on gene expression and DNA methylation patterns has solidly established three major ATRT subtypes (MYC, SHH and TYR), which show distinct clinical features, setting the basis for more effective, targeted treatment regimens. Transcriptional activity of transposable elements (TEs), like LINE1s and LTRs, is tightly linked with human cancers as a direct consequence of lifting epigenetic repression over TEs. The sole recurrent biallelic loss-of-function mutation in SMARCB1 in ATRTs, a core component of the SWI/SNF chromatin remodeling complex, raises the question of how TE transcription contributes to ATRT development. Here, we comprehensively investigate the transcriptional profiles of 1.9M LINE1 and LTR elements across ATRT subtypes in primary human samples. We find TE transcription profiles allow sample stratification into ATRT subtypes. The TE activity signature in the ATRT-MYC subtype is unique, setting these tumors apart from SHH and TYR ATRTs. More specifically, ATRT-MYC show broadly reduced transcript levels of LINE1 and ERVL-MaLR subfamilies. ATRT-MYC also displayed significantly less LTR and LINE1 loci with bidirectional promoter activity. Furthermore, we identify 849 differentially transcribed TEs in primary samples, which are predictive towards established ATRT-SHH and -MYC cell line models. In summary, including TE transcription profiles into the molecular characterization of ATRTs might reveal new tumor vulnerabilities leading to novel therapeutic interventions, such as immunotherapy.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.