Materials and Structures最新文献

筛选
英文 中文
Probing the steel-concrete interface microstructure using FIB-SEM nanotomography
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-21 DOI: 10.1617/s11527-025-02602-3
Thilo Schmid, Nicolas Ruffray, Michele Griffa, Zhidong Zhang, O. Burkan Isgor, Ueli M. Angst
{"title":"Probing the steel-concrete interface microstructure using FIB-SEM nanotomography","authors":"Thilo Schmid,&nbsp;Nicolas Ruffray,&nbsp;Michele Griffa,&nbsp;Zhidong Zhang,&nbsp;O. Burkan Isgor,&nbsp;Ueli M. Angst","doi":"10.1617/s11527-025-02602-3","DOIUrl":"10.1617/s11527-025-02602-3","url":null,"abstract":"<div><p>While it is widely accepted that the steel-concrete interface (SCI) plays an important role in governing the long-term durability of reinforced concrete structures, the understanding about the primary features of the SCI that influence corrosion degradation mechanisms has remained elusive. This lack of knowledge can be attributed to, firstly, the complex heterogeneous nature of the SCI, and secondly, the absence of established experimental techniques suitable for studying the relevant SCI features. Here, we use focused ion beam—scanning electron microscopy (FIB-SEM) nanotomography to obtain high-resolution 3D tomograms of the SCI. Five tomograms, spanning volumes ranging from 8000 to <span>({200,000},{upmu hbox {m}^{3}})</span>, of both non-corroded and corroded SCIs were acquired. The achieved voxel size falls within the range of 30–50 nm, which captures capillary pores highly relevant for moisture and ion transport. Potential pitfalls when applying the FIB-SEM technique to the SCI are highlighted, including aspects related to the electron detectors. We present an image processing pipeline that reduces artifacts and generates tomograms segmented into solid matrix and pore space. Furthermore, to characterize the SCI pore structure, diffusion tortuosity and porosity profiles. The analysis showed that there is a pronounced anisotropy in the pore structure. This work demonstrates that the FIB-SEM technique can be applied to acquire high resolution tomograms of the SCI pore structure, which can be digitally analyzed to inform transport models of the SCI.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02602-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Printable Ca(OH)2-based geopolymer concrete with steel fiber reinforcement
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-20 DOI: 10.1617/s11527-025-02600-5
Youssef Mortada, Ahmad Hammoud, Laith Masoud, Mateusz Wyrzykowski, Davide Sirtoli, Pietro Lura, Bilal Mansoor, Eyad Masad
{"title":"3D Printable Ca(OH)2-based geopolymer concrete with steel fiber reinforcement","authors":"Youssef Mortada,&nbsp;Ahmad Hammoud,&nbsp;Laith Masoud,&nbsp;Mateusz Wyrzykowski,&nbsp;Davide Sirtoli,&nbsp;Pietro Lura,&nbsp;Bilal Mansoor,&nbsp;Eyad Masad","doi":"10.1617/s11527-025-02600-5","DOIUrl":"10.1617/s11527-025-02600-5","url":null,"abstract":"<div><p>This study investigates the impact of varying steel fiber (SF) content (0%, 0.8%, 1.0%, and 1.2% by volume) on the mechanical and durability properties of 3D-printed Ca(OH)<sub>2</sub>-activated geopolymer concrete (GPC). The addition of 1.2% SF improved flexural strength by 69% at 7 days and 16% at 28 days, while tensile strength more than doubled to 3.75 MPa at 28 days. Although compressive strength remained unaffected at 43 MPa, SF enhanced interlayer bond strength by 20%, which is crucial for layer cohesion in 3D-printed structures. Additionally, the elastic modulus increased by 7%, contributing to improved stiffness. Durability assessments, including autogenous shrinkage and self-induced stress, indicated a slight reduction in shrinkage of SF-reinforced samples, with no significant effect on self-induced stress. Microstructural analysis using scanning electron microscopy (SEM) and X-ray micro-computed tomography (µCT) demonstrated the crack-bridging behavior of steel fibers, enhancing ductility and fracture resistance. There was a slight increase in porosity (5.34%) of SF-reinforced samples without negatively affecting their mechanical properties. Notably, SF improved early-age toughness and controlled crack propagation across printed layers, addressing a critical challenge in 3D-printed concrete. The novelty of this work lies in successfully reinforcing 3D-printed Ca(OH)<sub>2</sub>-activated GPC with recycled steel fibers, enhancing mechanical properties, interlayer bonding, and durability without compromising printability. This study offers a sustainable reinforcement strategy for 3D printing in construction.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02600-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-scale study of pre-damage, water boundary conditions and frost interaction in concrete
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-20 DOI: 10.1617/s11527-025-02599-9
Lang-Zi Chang, Katja Frid, Roland Kruse, Ralf Jänicke, Karin Lundgren
{"title":"Dual-scale study of pre-damage, water boundary conditions and frost interaction in concrete","authors":"Lang-Zi Chang,&nbsp;Katja Frid,&nbsp;Roland Kruse,&nbsp;Ralf Jänicke,&nbsp;Karin Lundgren","doi":"10.1617/s11527-025-02599-9","DOIUrl":"10.1617/s11527-025-02599-9","url":null,"abstract":"<div><p>This study investigated the interactive effects of pre-damage, water boundary conditions, and internal frost damage on concrete at dual-scale. The pre-damage included pre-cracking, which has not been studied experimentally before, and pre-compressive damage. Concrete specimens underwent pre-damage and had varied water boundary conditions during Freeze-Thaw Cycles (FTC). At the macro-scale, wedge-splitting tests combined with Digital Image Correlation (DIC) were conducted to assess post-FTC strength and fracture behaviour. At the meso-scale, X-ray CT scanning was employed to identify internal crack patterns. Results reveal that at the macro-scale, significant interaction between pre-damage and frost damage reduced splitting tensile strength compared to the internal frost damage alone. Besides, increased water exposure during FTCs reduced both splitting tensile strength and compressive strength, with a less pronounced reduction in splitting tensile strength. It also led to a diffuse crack pattern and increased tensile ductility. At the meso-scale, specimens subjected to the interactive effects of pre-damage and internal frost damage exhibited cracks along aggregate-cement interfaces and within the cement paste. Reference specimens displayed no internal cracks, while specimens exposed to only FTCs showed only cracks along aggregate-cement interfaces. Full submersion of specimens during FTCs induced more internal cracks than solely water on top. These findings on the interactions between pre-damage, water boundary conditions, and internal frost damage offer insight into the causes of frost damage, vital for the design and assessment of concrete structures in frost-prone environments. Furthermore, the results of these dual-scale tests can be used as a test case for the development of upscaling numerical models describing heat transfer and frost degradation in concrete.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02599-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties of sustainable freshwater marine sand mortar
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-18 DOI: 10.1617/s11527-025-02571-7
Amelia Pei Sze Chai, Mei Yun Chin, King Kuok Kuok, Md Rezaur Rahman
{"title":"Mechanical properties of sustainable freshwater marine sand mortar","authors":"Amelia Pei Sze Chai,&nbsp;Mei Yun Chin,&nbsp;King Kuok Kuok,&nbsp;Md Rezaur Rahman","doi":"10.1617/s11527-025-02571-7","DOIUrl":"10.1617/s11527-025-02571-7","url":null,"abstract":"<div><p>Marine sand has gained significant interest among researchers as a potential solution to the shortage of river sand for construction purposes. However, using marine sand as a fine aggregate in mortar has yielded contradictory results. To investigate the underlying reasons for this phenomenon, an experimental study was conducted to study the influence of marine sand with different characteristics on the mechanical performance of mortar. The shape and size of marine sand significantly impact its loose bulk density, voids and water absorption. The properties of marine sand mortar include workability, hardened density, flexural strength, and compressive strength. Beach marine sand, with its fine and uniform particles, requires higher water content, resulting in lower workability. This reduction in workability leads to decreased mechanical strength due to the increased voids within the mortar. However, marine sand’s sub-angular to angular shape contributes to mechanical strength by bonding with the cement paste and through the interlocking action between sand particles. Despite this, it has been found that the presence of voids within the mortar is the dominant factor contributing to its low mechanical strength. The flexural strength of marine sand mortar was reduced by 16.9%–49.3% compared to river sand mortar, while the compressive strength decreased by 20.9%–64.9%. One important finding is that marine sand that contains impurities such as coral skeletons and seashell fragments significantly reduces the mechanical performance of marine sand mortar. Based on this observation, it is evident that not all marine sand is suitable for use as fine aggregate in mortar.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02571-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification and quantification of minor iron-sulfide concentrations in concrete aggregate using automated mineralogy
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-17 DOI: 10.1617/s11527-025-02591-3
Nikolas Oberhardt, Stefanie Lode, Jan Lindgård, Kurt Aasly
{"title":"Classification and quantification of minor iron-sulfide concentrations in concrete aggregate using automated mineralogy","authors":"Nikolas Oberhardt,&nbsp;Stefanie Lode,&nbsp;Jan Lindgård,&nbsp;Kurt Aasly","doi":"10.1617/s11527-025-02591-3","DOIUrl":"10.1617/s11527-025-02591-3","url":null,"abstract":"<div><p>Iron sulfide concentrations and mineral associations triggering the internal deterioration of concrete structures are still enigmatic. Incidences of internal sulfate attacks induced by iron sulfide-containing concrete aggregates appear worldwide. Severe cases are reported from Canada, the United States of America, and Ireland. Moreover, conservative limits for the total sulfur content of aggregates increased the need to dispose of otherwise high-quality resources for concrete production. The maximum threshold values for total elemental sulfur in the European standard EN-12620 for concrete aggregates are <span>(le)</span> 1 wt.<span>(%)</span>, and as little as <span>(le)</span>0.1 wt.<span>(%)</span> if the non-stoichiometric iron-sulfide pyrrhotite (Fe<sub>(1-x)</sub>S) is present in the rock. This study investigates the potential of scanning electron microscopy-based automated mineralogy for mineral classification and the quantitative quality assessment for concrete aggregate material. Identifying the stoichiometrically closely related disulfide pyrite and monosulfide pyrrhotite is emphasized. The iron/sulfur ratio and greyscale variations in the electron backscatter images between pyrite and pyrrhotite were tested as additional differentiation criteria when acquiring mineral mapping and point-of-interest analysis. The added greyscale criterion yielded a better distinction between the two chemically similar phases. A good correlation was achieved when comparing results from energy-dispersive X-ray spectroscopy in automated mineralogy with wavelength-dispersive spectroscopy point analyses on the electron microprobe. Semi-quantification of the chemical data from automated mineralogy was computed for the total sulfur content in the petrographic samples. The total sulfur content of bulk samples, investigated by high-temperature combustion and inductively coupled plasma atomic emission spectroscopy, was consistent with the semi-quantitative results of automated mineralogy.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02591-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recommendation of RILEM TC 269-IAM: damage assessment in consideration of repair/retrofit-recovery in concrete and masonry structures by means of innovative NDT
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-17 DOI: 10.1617/s11527-024-02524-6
Tomoki Shiotani, Kazuo Watabe, RILEM Technical Committee
{"title":"Recommendation of RILEM TC 269-IAM: damage assessment in consideration of repair/retrofit-recovery in concrete and masonry structures by means of innovative NDT","authors":"Tomoki Shiotani,&nbsp;Kazuo Watabe,&nbsp;RILEM Technical Committee","doi":"10.1617/s11527-024-02524-6","DOIUrl":"10.1617/s11527-024-02524-6","url":null,"abstract":"<div><p>This recommendation specifies a method for measuring passive elastic waves and assessing damage to concrete members such as decks and girders. To visualize internal damage, acoustic emissions (AE) and elastic wave velocity are employed. Firstly, based on the data detected by AE sensors, the location of the AE sources is estimated. Then, the velocity distribution in the concrete is evaluated. Accordingly, the internal damage of concrete deck can be evaluated quantitatively by applying a simple procedure using two evaluation axes, which are AE source density and elastic wave velocity in the concrete. Thus, the local deterioration of the concrete member can be classified into several stages that represent the damage levels of internal defects.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02524-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Report of RILEM TC 281-CCC: phase assemblage alterations and carbonation potential of mortar with blended cements induced by long duration carbonation exposure
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-17 DOI: 10.1617/s11527-024-02555-z
Juan M. Etcheverry, Natalia Alderete, Marlene Sakoparnig, Hanne Vanoutrive, Cyrill Grengg, Elke Gruyaert, Nele De Belie
{"title":"Report of RILEM TC 281-CCC: phase assemblage alterations and carbonation potential of mortar with blended cements induced by long duration carbonation exposure","authors":"Juan M. Etcheverry,&nbsp;Natalia Alderete,&nbsp;Marlene Sakoparnig,&nbsp;Hanne Vanoutrive,&nbsp;Cyrill Grengg,&nbsp;Elke Gruyaert,&nbsp;Nele De Belie","doi":"10.1617/s11527-024-02555-z","DOIUrl":"10.1617/s11527-024-02555-z","url":null,"abstract":"<div><p>Replacement of Portland cement is a practical strategy to reduce concrete manufacturing CO<sub>2</sub> emissions. However, this approach typically results in a diminished portlandite content in the hardened mix, elevating the risk of carbonation-induced corrosion in steel-reinforced concrete. Carbonation is frequently studied by exposing the samples to elevated CO<sub>2</sub> levels (1% and 20%). However, the carbonation process and its by-products might differ markedly under natural conditions. In the context of RILEM TC 281-CCC ‘Carbonation of Concrete with SCMs’, a comprehensive three-year natural carbonation study on mortar samples was carried out across three laboratories. Samples were made with commercially available cement (CEM I, CEM II/B-V, CEM III/B). This study examined two natural carbonation scenarios: one in a regulated climate chamber and the other outdoors, protected from direct rainfall. The progression of carbonation was determined using a phenolphthalein indicator and compared to optical pH measurements. The phase composition was analysed by X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, and thermogravimetric analysis. Additionally, the CO<sub>2</sub> capture in three-year-old naturally carbonated samples was assessed and contrasted against the reactive CaO content. The thermogravimetric analysis data revealed a non-linear relationship between the portlandite content in the uncarbonated zone and the carbonation rate. A reduced clinker content leads to lower pH values in carbonated and uncarbonated zones. Notably, samples containing CEM II displayed the largest formation of CaCO<sub>3</sub> which, divided by the theoretical maximum amount of CaCO<sub>3</sub> from reactive CaO, signifies the highest degree of carbonation among the cement types studied.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometrical quality inspection in 3D concrete printing using AI-assisted computer vision
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-14 DOI: 10.1617/s11527-025-02594-0
Weijiu Cui, Wenliang Liu, Ruyi Guo, Da Wan, Xiaona Yu, Luchuan Ding, Yaxin Tao
{"title":"Geometrical quality inspection in 3D concrete printing using AI-assisted computer vision","authors":"Weijiu Cui,&nbsp;Wenliang Liu,&nbsp;Ruyi Guo,&nbsp;Da Wan,&nbsp;Xiaona Yu,&nbsp;Luchuan Ding,&nbsp;Yaxin Tao","doi":"10.1617/s11527-025-02594-0","DOIUrl":"10.1617/s11527-025-02594-0","url":null,"abstract":"<div><p>3D concrete printing is an innovative technology poised to transform the construction industry by enabling the automated, layer-by-layer creation of structures directly from digital models. This approach offers numerous advantages over traditional construction methods, including reduced labor costs, faster build times, and the ability to produce complex geometries with high precision. However, unlike conventional mold-cast concrete, 3D printable concrete must support itself without external formwork, posing significant challenges related to material deformation during the printing process. Uncontrolled deformation can lead to structural instability, design deviations, and cumulative errors. Traditional methods for monitoring the geometrical quality of 3D-printed concrete are often insufficient in accuracy and efficiency. Recent advancements in artificial intelligence (AI) present new opportunities for addressing these challenges. AI-assisted methods leverage machine learning to analyze large datasets, enabling more accurate predictions and real-time monitoring and control of deformation during the 3D printing process. In this paper, we explored the application of AI-assisted methods for real-time deformation analysis in 3D concrete printing. Specifically, the Yolo-v5 algorithm, an AI-assisted object detection technique, was employed for the computer vision of extruded concrete filaments. Several quantitative metrics were proposed, including the layer height, layer angle, and curvature. In addition, the rheological properties of 3D-printed concrete were measured to refine the computer vision analysis results. Through experimental validation, we demonstrated the effectiveness of the developed AI-assisted computer vision system in monitoring the 3D concrete printing process.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02594-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementing the effect of geopolymer concrete pore solution pH in the standard rapid migration test NT Build 492 protocol
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-11 DOI: 10.1617/s11527-025-02586-0
Yu Pang, Quang Dieu Nguyen, Arnaud Castel
{"title":"Implementing the effect of geopolymer concrete pore solution pH in the standard rapid migration test NT Build 492 protocol","authors":"Yu Pang,&nbsp;Quang Dieu Nguyen,&nbsp;Arnaud Castel","doi":"10.1617/s11527-025-02586-0","DOIUrl":"10.1617/s11527-025-02586-0","url":null,"abstract":"<div><p>This research investigates the impact of the pore solution pH values on chloride content at the colour change boundary determined according to the standard rapid migration test (NT Build 492), with a focus on alkali-activated materials, so-called geopolymer. The study investigates a range of geopolymer formulations using various proportions of ground granulated blast furnace slag (GGBFS), fly ash, and calcined clay, alongside different activator concentrations, to examine their influence on the pH value of the pore solution. Findings from this study suggest that the pH value of the pore solution greatly influence in the chloride ion concentration at the colour change boundary, which should be accounted for in the calculation of the non-steady-state migration coefficients (D<sub>nssm</sub>). It is noted that mixtures with higher GGBFS content exhibit higher pH values than mixtures containing fly ash or calcined clay, impacting the D<sub>nssm</sub>. The results advocate for modifications to the standard NT Build 492 protocol to enhance its applicability and accuracy for geopolymer materials, emphasizing the importance of using revised D<sub>nssm</sub> values calculated considering the unique properties of geopolymer concrete for more durability assessment.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02586-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of coarse or fine aggregate reactivity on bonding deterioration of reinforced concrete exposed to alkali–silica reaction
IF 3.4 3区 工程技术
Materials and Structures Pub Date : 2025-02-11 DOI: 10.1617/s11527-025-02587-z
Maryam Abbasiyan Taeb, Freydoon Rezaie, Ebrahim Ghiasvand
{"title":"Effect of coarse or fine aggregate reactivity on bonding deterioration of reinforced concrete exposed to alkali–silica reaction","authors":"Maryam Abbasiyan Taeb,&nbsp;Freydoon Rezaie,&nbsp;Ebrahim Ghiasvand","doi":"10.1617/s11527-025-02587-z","DOIUrl":"10.1617/s11527-025-02587-z","url":null,"abstract":"<div><p>Composite performance in concrete structures requires steel–concrete bonding. Environmental conditions prone to alkali–silica reaction (ASR) steadily impact the mechanical properties of concrete, including its bond strength. This research aims to investigate the effect of reactive aggregate size on the bond strength of concrete in ASR environmental conditions. To this end, four mixtures were prepared with different combinations of reactive and non-reactive fine and coarse aggregates. Then, Reinforced Concrete (RC) blocks with 12 and 16 mm rebars were cast with these various mixtures. These specimens were immersed in NaOH solution at high temperature for 3 or 6 months to accelerate the ASR. Subsequently, the pull-out test (POT) was performed to evaluate the bond strength of the concrete blocks. The results showed that with the passage of time and intensification of the ASR, the ultimate bond stress decreased. Also, with the decrease in reactive aggregate size in the concrete mixture, the ultimate bond stress loss intensified. The ultimate bond stress of the 12 mm rebars embedded in the RC blocks where reactive gravel was solely used decreased by 5.8% and 8.2% compared to RC blocks where reactive sand was solely used, after 6 months of immersion. Moreover, the variation in the reactive aggregate size or immersion duration did not affect the failure mode of the specimens with the same diameter rebar. However, by changing the rebar diameter from 12 to 16 mm, the ASR caused a variation in the failure mode of the specimens. Finally, a proposed bond-slip model was employed for the pull-out specimens by adjusting the coefficients within the CEB-FIB model.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信