铁尾矿-碳纤维在地聚合物复合材料中的协同作用:自传感砂浆的多目标优化

IF 3.9 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Ning Zhang, Weikun Zhai, Zexuan Cheng, Yue Geng, Yongqiang Li, Weijun Mi, Shiyang Yin
{"title":"铁尾矿-碳纤维在地聚合物复合材料中的协同作用:自传感砂浆的多目标优化","authors":"Ning Zhang,&nbsp;Weikun Zhai,&nbsp;Zexuan Cheng,&nbsp;Yue Geng,&nbsp;Yongqiang Li,&nbsp;Weijun Mi,&nbsp;Shiyang Yin","doi":"10.1617/s11527-025-02746-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a multi-phase synergistic conductive network design strategy, innovatively utilizing industrial solid waste iron tailings sand (ITs) as a low-cost, eco-friendly conductive phase alongside carbon fibers (CFs) within an alkali-activated geopolymer matrix. This approach develops geopolymer mortar (TCAGM) with integrated superior mechanical properties and self-sensing functionality. Through Response Surface Methodology-Box-Behnken Design (RSM-BBD), the alkaline activator modulus (A), sol–gel ratio (B), and CF volume fraction (C) were optimized, overcoming the performance-cost-sustainability trade-off inherent in conventional self-sensing materials. The optimal mix proportion (A = 1.42, B = 0.82, C = 0.4%) achieves high electrical conductivity (1.98 × 10<sup>−2</sup>(Ω ·cm)<sup>−1</sup>, stable without degradation) and piezoresistive performance (− 0.0157 MPa<sup>−1</sup>, fluctuation within ± 5%). The multi-scale conductive network (long-range CF pathways + short-range ITs electron hopping + ionic transport) not only reduces CF dosage by 20–60% and raw material costs by 20% through ITs substitution but also enhances electromechanical performance. This work establishes a sustainable paradigm for high-performance, low-environmental-impact intelligent construction materials.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron tailings-carbon fiber synergy in geopolymer composites: multi-objective optimization of self-sensing mortar\",\"authors\":\"Ning Zhang,&nbsp;Weikun Zhai,&nbsp;Zexuan Cheng,&nbsp;Yue Geng,&nbsp;Yongqiang Li,&nbsp;Weijun Mi,&nbsp;Shiyang Yin\",\"doi\":\"10.1617/s11527-025-02746-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a multi-phase synergistic conductive network design strategy, innovatively utilizing industrial solid waste iron tailings sand (ITs) as a low-cost, eco-friendly conductive phase alongside carbon fibers (CFs) within an alkali-activated geopolymer matrix. This approach develops geopolymer mortar (TCAGM) with integrated superior mechanical properties and self-sensing functionality. Through Response Surface Methodology-Box-Behnken Design (RSM-BBD), the alkaline activator modulus (A), sol–gel ratio (B), and CF volume fraction (C) were optimized, overcoming the performance-cost-sustainability trade-off inherent in conventional self-sensing materials. The optimal mix proportion (A = 1.42, B = 0.82, C = 0.4%) achieves high electrical conductivity (1.98 × 10<sup>−2</sup>(Ω ·cm)<sup>−1</sup>, stable without degradation) and piezoresistive performance (− 0.0157 MPa<sup>−1</sup>, fluctuation within ± 5%). The multi-scale conductive network (long-range CF pathways + short-range ITs electron hopping + ionic transport) not only reduces CF dosage by 20–60% and raw material costs by 20% through ITs substitution but also enhances electromechanical performance. This work establishes a sustainable paradigm for high-performance, low-environmental-impact intelligent construction materials.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02746-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02746-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种多相协同导电网络设计策略,创新地利用工业固体废铁尾矿砂(ITs)作为一种低成本、环保的导电相,与碱激活的地聚合物基质中的碳纤维(cf)一起。这种方法开发的地聚合物砂浆(TCAGM)具有综合优异的机械性能和自传感功能。通过响应面法- box - behnken设计(RSM-BBD),优化了碱性活化剂模量(A)、溶胶-凝胶比(B)和CF体积分数(C),克服了传统自传感材料固有的性能-成本-可持续性权衡。最佳配比(A = 1.42, B = 0.82, C = 0.4%)可获得较高的电导率(1.98 × 10−2(Ω·cm)−1,稳定不退化)和压阻性能(−0.0157 MPa−1,波动在±5%以内)。该多尺度导电网络(远程CF路径+短程ITs电子跳变+离子输运)通过ITs替代,不仅减少CF用量20-60%,原材料成本降低20%,而且提高了机电性能。这项工作为高性能、低环境影响的智能建筑材料建立了一个可持续的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iron tailings-carbon fiber synergy in geopolymer composites: multi-objective optimization of self-sensing mortar

Iron tailings-carbon fiber synergy in geopolymer composites: multi-objective optimization of self-sensing mortar

This study proposes a multi-phase synergistic conductive network design strategy, innovatively utilizing industrial solid waste iron tailings sand (ITs) as a low-cost, eco-friendly conductive phase alongside carbon fibers (CFs) within an alkali-activated geopolymer matrix. This approach develops geopolymer mortar (TCAGM) with integrated superior mechanical properties and self-sensing functionality. Through Response Surface Methodology-Box-Behnken Design (RSM-BBD), the alkaline activator modulus (A), sol–gel ratio (B), and CF volume fraction (C) were optimized, overcoming the performance-cost-sustainability trade-off inherent in conventional self-sensing materials. The optimal mix proportion (A = 1.42, B = 0.82, C = 0.4%) achieves high electrical conductivity (1.98 × 10−2(Ω ·cm)−1, stable without degradation) and piezoresistive performance (− 0.0157 MPa−1, fluctuation within ± 5%). The multi-scale conductive network (long-range CF pathways + short-range ITs electron hopping + ionic transport) not only reduces CF dosage by 20–60% and raw material costs by 20% through ITs substitution but also enhances electromechanical performance. This work establishes a sustainable paradigm for high-performance, low-environmental-impact intelligent construction materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信