Ying Bai, Gan Yang, Tongde Liu, Fuyan Chen, Junhong Xia
{"title":"Dynamic Chromatin Accessibility and Transcriptional Regulation in the Eyes of Red Tilapia (Oreochromis sp.) in Response to Wintering Stress","authors":"Ying Bai, Gan Yang, Tongde Liu, Fuyan Chen, Junhong Xia","doi":"10.1007/s10126-025-10424-1","DOIUrl":"10.1007/s10126-025-10424-1","url":null,"abstract":"<div><p>During wintering, red tilapia may develop variable black spots on their bodies, significantly reducing their market value. Understanding the mechanisms driving this phenomenon is essential for molecular improvements in body color. In this study, we investigated chromatin accessibility landscapes in the eyes of red tilapia with two distinct phenotypes (normal pure red and black spot) under wintering stress using ATAC-seq and RNA-seq analyses. We observed that approximately 32.7% of chromatin accessibility peaks were located in promoter regions, followed by intergenic regions (32.4%) and intronic regions (26.7%). One thousand two hundred twenty-nine differentially accessible regions (DARs) and 1448 differentially expressed genes (DEGs) were identified between the RS and DS groups. Notably, DEGs associated with melanin synthesis, including <i>tyrp1</i>, <i>tyr</i>, <i>tyrp1b</i>, <i>pmela</i>, <i>slc24a5</i>, and <i>mlph</i>, were significantly upregulated in the DS group, which aligns with the observed 1.85-fold increase in melanin content, compared to the RS group. 92 DEGs were associated with significant changes in chromatin accessibility between groups (<i>R</i><sup>2</sup> = 0.8059; <i>p</i> < 0.0001), indicating potential regulatory relationships. Interestingly, 23.92% of the DARs were located on the chromosome 3. Specifically, a 2.5-fold difference in average peak height on LG3: 11,215,273–11,217,225 were observed between DS and RS tilapia. In the region, transcription factors including HSF1 and HSF2 were identified as key regulators of chromatin structure and gene expression under wintering stress. Our findings reveal that dynamic chromatin accessibility in the eyes of red tilapia facilitates adaptation to wintering stress by regulating visual signaling, melanin production, and downstream pigmentation.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biyang Hu, Hong Yu, Lingfeng Kong, Shikai Liu, Shaojun Du, Qi Li
{"title":"CgPPOX and CgFECH Mediate Protoporphyrin IX Accumulation Predominantly in the Outer Mantle Fold of Pacific Oyster Crassostrea gigas","authors":"Biyang Hu, Hong Yu, Lingfeng Kong, Shikai Liu, Shaojun Du, Qi Li","doi":"10.1007/s10126-025-10425-0","DOIUrl":"10.1007/s10126-025-10425-0","url":null,"abstract":"<div><p>Mollusk shell is secreted through mantle folds and exhibits color polymorphism predominantly caused by pigments. Mantle tissue consists of three folds, with the outer fold playing crucial roles in shell formation. Among various pigments influencing shell color, porphyrins—especially protoporphyrin IX (PPIX)—significantly contribute to orange-shell phenotype. However, the distinct functions of mantle folds in shell coloration and pigmentation remain poorly understood. In this study, the frozen section of fresh mantles from orange and gold shell-color Pacific oyster <i>Crassostrea gigas</i> was observed to have distinct porphyrin distributions. Significant differences in porphyrin spectrum and precise PPIX concentrations were detected among mantle folds of shell-color strains <i>C. gigas</i>. In addition, key genes from porphyrin pathway: protoporphyrinogen oxidase (PPOX) and ferrochelatase (FECH) were characterized to exhibit distinct expression patterns among mantle folds of different shell-colored oysters. Dual-label fluorescence in situ hybridization analysis of <i>Cg</i>PPOX and <i>Cg</i>FECH with the PPIX translocator protein (<i>Cg</i>TspO) verified the predominant functional location of these genes is the oyster outer mantle fold and periostracal groove. Furthermore, in vivo knockdown of <i>Cg</i>PPOX and <i>Cg</i>FECH verified their roles in PPIX metabolism, resulting in significant changes in porphyrin metabolic-related gene expression and altered PPIX concentrations in both the outer mantle fold and the newly deposited shell of <i>C. gigas</i>. This study identified the differential mantle fold porphyrin distribution and demonstrated essential roles of <i>Cg</i>PPOX and <i>Cg</i>FECH in PPIX metabolism, correlating with variations in PPIX content and shell color of <i>C. gigas</i>. The results provide new insights into molecular mechanisms underlying shell-color polymorphism in mollusks.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Delta-7 Alkenone Desaturase in Haptophyte Gephyrocapsa huxleyi Through Heterologous Expression in Tisochrysis lutea","authors":"Kohei Yoneda, Chinatsu Kobayashi, Hiroya Araie, Rikuri Morita, Ryuhei Harada, Yasuteru Shigeta, Hirotoshi Endo, Yoshiaki Maeda, Iwane Suzuki","doi":"10.1007/s10126-025-10427-y","DOIUrl":"10.1007/s10126-025-10427-y","url":null,"abstract":"<div><p>The marine haptophyte <i>Gephyrocapsa huxleyi</i> is an ecologically and geochemically important phytoplankton due to its contribution to the global carbon cycle and its ability to biosynthesize certain alkenones. These alkenones are long-chain alkyl ketones with two to four <i>trans</i>-type double bonds. The genes encoding alkenone desaturase in <i>G. huxleyi</i> have not been experimentally characterized so far, partly due to the difficulty of inducing genetic transformation in <i>G. huxleyi</i>. Therefore, we introduced the putative alkenone delta-7 desaturase of <i>G. huxleyi</i> (designated “DesT”) to the transformable and alkenone-producing haptophyte <i>Tisochrysis lutea</i>. We found two types of coding sequences for DesT, which are probably derived from the expression products of different alleles, and designated them “DesT-1” and “DesT-2.” The ratio of C<sub>37:3</sub> to C<sub>37:2</sub> methyl alkenone in the DesT-1 transformant was significantly higher than that in the mock strain that expressed only the hygromycin resistance gene, suggesting that DesT-1 was an alkenone delta-7 desaturase in <i>G. huxleyi</i>. In the protein structure, a tunnel where a substrate alkenone penetrates was predicted to be located around the histidine box of DesT, and hydrophilic and hydrophobic amino acids were respectively located at the proximal (near side to the histidine box) and distal ends of the tunnel. This is the first study to conduct experimental characterization of the alkenone metabolism-related gene in <i>G. huxleyi</i>. The heterologous expression system using <i>T. lutea</i> paves the way for further characterization of the alkenone metabolism-related genes in less transformable haptophytes.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10126-025-10427-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kim Jye Lee Chang, Eduardo Gorron Gomez, Esmaeil Ebrahimie, Manijeh Mohammadi Dehcheshmeh, Dion M. F. Frampton, Xue-Rong Zhou
{"title":"Transcriptomic Signature of Lipid Production in Australian Aurantiochytrium sp. TC20","authors":"Kim Jye Lee Chang, Eduardo Gorron Gomez, Esmaeil Ebrahimie, Manijeh Mohammadi Dehcheshmeh, Dion M. F. Frampton, Xue-Rong Zhou","doi":"10.1007/s10126-025-10415-2","DOIUrl":"10.1007/s10126-025-10415-2","url":null,"abstract":"<div><p><i>Aurantiochytrium</i> not only excels in producing long-chain polyunsaturated fatty acids such as docosahexaenoic acid for humans, but it is also a source of essential fatty acids with minimal impacts on wild fisheries and is vital in the transfer of atmospheric carbon to oceanic carbon sinks and cycles. This study aims to unveil the systems biology of lipid production in the Australian <i>Aurantiochytrium</i> sp. TC20 by comparing the transcriptomic profiles under optimal growth conditions with increased fatty acid production from the early (Day 1) to late exponential growth phase (Day 3). Particular attention was paid to 227 manually annotated genes involved in lipid metabolism, such as <i>FAS</i> (fatty acid synthetase) and subunits of polyunsaturated fatty acids (<i>PUFA</i>) synthase. PCA analysis showed that differentially expressed genes, related to lipid metabolism, efficiently discriminated Day 3 samples from Day 1, highlighting the key robustness of the developed lipid-biosynthesis signature. Highly significant (pFDR < 0.01) upregulation of polyunsaturated fatty acid synthase subunit B (<i>PFAB</i>) involved in fatty acid synthesis, lipid droplet protein (<i>TLDP</i>) involved in TAG-synthesis, and phosphoglycerate mutase (<i>PGAM-2</i>) involved in glycolysis and gluconeogenesis were observed. KEGG enrichment analysis highlighted significant enrichment of the biosynthesis of unsaturated fatty acids (pFDR < 0.01) and carbon metabolism pathways (pFDR < 0.01). This study provides a comprehensive overview of the transcriptional landscape of Australian <i>Aurantiochytrium</i> sp. TC20 in the process of fatty acid production.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10126-025-10415-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress in Preparation Technology and Functional Research On Marine Bioactive Peptides","authors":"Jing Wang, Fengcheng Li, Wenjun Li, Yueming Li, Jian Zhang, Song Qin","doi":"10.1007/s10126-024-10401-0","DOIUrl":"10.1007/s10126-024-10401-0","url":null,"abstract":"<div><p>Marine bioactive peptides are a class of peptides derived from marine organisms that can optimize the body’s metabolic environment and benefit the body’s health. These peptides have attracted increasing amounts of attention due to their wide range of health-promoting effects. Additionally, they have the potential to ameliorate diseases such as hypertension, diabetes, influenza viruses, and inflammation and can be used as functional foods or nutritional supplements for the purpose of treating or alleviating diseases. This paper reviews the recent research progress on marine bioactive peptides, focusing on their production technologies and functions in biomaterials and drug development.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptome Sequencing Reveals Effects of Artificial Feed Domestication on Intestinal Performance and Gene Expression of Carnivorous Mandarin Fish (Siniperca chuatsi) and Related Mechanisms","authors":"Jia-Xing Luo, Xiao-Tian Gao, Zhen Rong, Li-Han Zhang, Yan-Feng Sun, Zun-Li Qi, Qi Yu, Khor Waiho, Wei-Xu Zhao, Yi-Huan Xu, Chun-Long Zhao, Cheng-Bin Wu","doi":"10.1007/s10126-025-10420-5","DOIUrl":"10.1007/s10126-025-10420-5","url":null,"abstract":"<div><p>Mandarin fish (<i>Siniperca chuatsi</i>) is a voracious carnivorous species, usually consuming only live bait fish, but dietary acclimation enables it to accept artificial feed. However, the effects of dietary acclimation on intestinal performance and gene expression in mandarin fish and related mechanisms remain largely unknown. Therefore, this study investigated the effects of artificial feed on intestinal physicochemical and biochemical performance and gene expression in mandarin fish. Mandarin fish were sampled on day 10 after feeding with live dace (LD), at day 40 after subsequent feeding with dead dace plus artificial feed (DD + AF) from day 11 to day 40, and at day 90 after continuous feeding with artificial feed (AF) alone from day 41 to day 90 for transcriptome sequencing. The biochemical analysis results indicated that artificial feed significantly increased the activity of antioxidant enzymes glutathione peroxidase and superoxide dismutase in the intestine, liver, and stomach. Histological analysis demonstrated intestinal damage in mandarin fish fed with artificial feed. The GO and KEGG enrichment analyses indicated that the DEGs in AF vs. DD + AF were significantly enriched in the pentose phosphate pathway, and the DEGs in AF vs. LD were mainly significantly enriched in glycolysis/gluconeogenesis and PPAR signaling pathways. Nineteen feed acclimation–related key genes such as gene <i>pfkfb4a</i> and <i>scd</i> were identified in the intestine and found to exhibit upregulated expressions. These results revealed that artificial feed domestication enhanced the antioxidant capacity of the mandarin fish intestine and reduced hepatic lipid deposition by upregulating the related gene expression of mandarin fish and that the regulation of carbon metabolisms, including sugar, lipid, and steroid metabolisms, might be fundamental mechanisms for mandarin fish to acclimatize to dietary changes. These findings provide novel insights into the feed acclimation mechanism of mandarin fish, holding implications for promoting large-scale artificial feed aquaculture of mandarin fish and improving economic efficiency.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pingrui Xu, Yongshuang Xiao, Zhizhong Xiao, Jun Li
{"title":"Structural Variation Analysis in the samd3/elf3 Intergenic Region of the Barred knifejaw (Oplegnathus fasciatus) and the Development of Molecular Marker for Efficient Sex Identification","authors":"Pingrui Xu, Yongshuang Xiao, Zhizhong Xiao, Jun Li","doi":"10.1007/s10126-025-10417-0","DOIUrl":"10.1007/s10126-025-10417-0","url":null,"abstract":"<div><p>The fish species <i>Oplegnathus fasciatus</i> exhibits an X<sub>1</sub>X<sub>1</sub>X<sub>2</sub>X<sub>2</sub>/X<sub>1</sub>X<sub>2</sub>Y sex determination mechanism. This species holds considerable economic value and displays pronounced sexual dimorphism in growth. Therefore, the development of a rapid and accurate method for sex identification is critical to enhancing breeding efficiency and maximizing production value. Using third-generation PacBio whole-genome sequencing, we identified a homologous region in the <i>samd3/elf3</i> intergenic region of the X and Y chromosomes of <i>O. fasciatus</i>. Analysis of the whole-genome sequence revealed a large DNA insertion marker fragment within this region. Using specifically designed primers, two bands of 390 bp and 1008 bp were successfully amplified in males, whereas only a single 390 bp band was detected in females. This marker can be easily distinguished by agarose gel electrophoresis, greatly enhancing the efficiency and accuracy of sex identification. This study not only expands the molecular marker system for sex identification of <i>O. fasciatus</i> but also offers a valuable methodological reference for sex identification in other economically important fish species. These findings have significant implications for germplasm improvement and efficient selection in aquaculture.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-Assisted Gene-Flow Rescued Genetic Diversity Without Hindering Growth Performance in an Inbred Coho Salmon (Oncorhynchus kisutch) Population Selected for High Growth Phenotype","authors":"Junya Kobayashi, Ryo Honda, Sho Hosoya, Yuki Nochiri, Keisuke Matsuzaki, Koichi Sugimoto, Atsushi J. Nagano, Akira Kumagai, Kiyoshi Kikuchi, Tadahide Kurokawa","doi":"10.1007/s10126-025-10416-1","DOIUrl":"10.1007/s10126-025-10416-1","url":null,"abstract":"<div><p>Selective breeding is a powerful tool for improving aquaculture production. A well-managed breeding program is essential, as populations can otherwise lose genetic diversity, leading to reduced selection response and inbreeding excesses. In such cases, genetic diversity in broodstock must be restored by introducing individuals from external populations. However, this can reduce the accumulated genetic gains from selective breeding. However, the selective introduction of individuals with superior phenotypes will allow the restoration of genetic diversity without sacrificing these gains. In this study, we demonstrated this possibility using a selectively bred (SB) and a randomly bred (RB) population of coho salmon (<i>Oncorhynchus kisutch</i>). Forty males with superior growth were selected from the RB population using genomic selection and crossed with 127 randomly collected females from the SB population, producing a newly bred (NB) population. Genetic diversity, assessed from population statistics such as effective number of alleles, allele richness, and observed heterozygosity of 11 microsatellite markers, was higher in NB than in SB and RB. Additionally, fork length and body weight were compared among the three populations after 12 months of growth post-fertilization in common tanks. The least-squares means of fork length and body weight were similar between NB (164.9 mm and 57.9 g) and SB (161.1 mm and 53.7 g), while both were significantly greater than RB (150.4 mm and 43.0 g). Our results highlight the effectiveness of genome-assisted gene flow in restoring the genetic diversity of a population without compromising accumulated genetic gain in growth.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tong De Liu, Dan Dan Huang, Le Yi Chang, Tao Fei Qiao, Jun Hong Xia
{"title":"Identification of a Novel QTL on LG16 Associated with Acute Salt Tolerance in Red Tilapia (Oreochromis spp.) Using GWAS","authors":"Tong De Liu, Dan Dan Huang, Le Yi Chang, Tao Fei Qiao, Jun Hong Xia","doi":"10.1007/s10126-025-10422-3","DOIUrl":"10.1007/s10126-025-10422-3","url":null,"abstract":"<div><p>Culturing saline tilapia has become a new trend in the aquaculture due to the scarcity of freshwater resources. In this study, the genetic basis controlling for salt tolerance were investigated by using a ddRAD-seq-based GWAS in 288 individuals with extreme salt tolerant traits from half-sib families of red tilapia. 12 genome-wide significant SNPs and 6 chromosome-wide significant SNPs associated with acute salt tolerance were identified. Two QTLs on LG18:25,593,701–7009020 and on LG16:19,735,164–21,231,391 were defined. It is noteworthy that the QTL on LG16 is a novel QTL associated with acute salt stress. Near the significant SNP sites, we identified candidate genes <i>sik1</i>, <i>ltb4r2b, pnp5b</i> and <i>kirrel1b</i> with differential transcript expression under salt stress. Furthermore, significant physiological differences in serum osmolality and ion concentrations were confirmed between the tolerant group and sensitive group under 4.5 h of 22 ppt stress. The sensitive group had much higher serum osmolality (osmolality: 642.20 ± 6.30 mOsm/kg) and higher concentrations of sodium and chloride ions (sodium: 317.67 ± 5.03 mmol/L and chloride: 316.43 ± 8.28 mmol/L) than the tolerant group (547.60 ± 15.44 mOsm/kg, <i>p</i> <sub>osmolality</sub> = 0.0002; sodium: 280.53 ± 9.13 mmol/L, <i>p</i> <sub>sodium</sub> < 0.0242; chloride: 266.00 ± 12.00 mmol/L, <i>p</i> <sub>chloride</sub> < 0.0184). However, the lowest bicarbonate concentration was detected in the sensitive group at 22 ppt (2.53 ± 0.30 mmol/L), which was significantly different from both the sensitive group at 0 ppt (<i>p</i> = 0.0008) and the tolerant group at 22 ppt (<i>p</i> = 0.0164). Our research laid the foundation for exploring the genetic mechanisms of acute salt tolerance and osmoregulation in red tilapia and for developing strains of red tilapia adapted to saltwater.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alba Vergès-Castillo, Patricia Herrera-Pérez, Carlos Pendón, Águeda J. Martín-Robles, José A. Muñoz-Cueto
{"title":"Photoperiod and Light Spectrum Modulate Daily Rhythms and Expression of Genes Involved in Cell Proliferation, DNA Repair, Apoptosis and Oxidative Stress in a Seabream Embryonic Stem Cell Line","authors":"Alba Vergès-Castillo, Patricia Herrera-Pérez, Carlos Pendón, Águeda J. Martín-Robles, José A. Muñoz-Cueto","doi":"10.1007/s10126-025-10418-z","DOIUrl":"10.1007/s10126-025-10418-z","url":null,"abstract":"<div><p>The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R’s rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, <i>Sparus aurata</i>) was employed to assess the effects of photoperiod (light/dark cycles <i>vs</i> constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition. Under LDB, the mRNA levels of cell proliferation (<i>pcna</i>), DNA repair (<i>cry5</i>), anti-apoptotic (<i>bcl2</i>) and oxidative stress (<i>prdx2</i>) markers peaked at the day-night transition, whereas pro-apoptotic (<i>bax</i>) and cell stress (<i>hsp70</i>) markers showed their highest expression at the night-day transition, evidencing the strong synchronisation of the transcription of key genes involved in the cell cycle in this photoregime. The persistence of significant <i>pcna</i>, <i>cry5</i>, <i>hsp70</i> and <i>prdx2</i> rhythms after 3 days in constant darkness reveals the endogenous and circadian nature of these rhythms. Our results highlight the importance of implementing photoperiods with light–dark cycles of blue wavelengths when performing fish cell culture research. These results reinforce and extend our previous studies, confirming the importance of lighting conditions that mimic the natural environment for the proper development of fish embryos and larvae in aquaculture.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}