{"title":"Optimization of Railway Operating in terms of Distribution System Voltage Drop","authors":"M. Botte, L. D’Acierno, F. Mottola, M. Pagano","doi":"10.1109/VPPC49601.2020.9330847","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330847","url":null,"abstract":"Today, electrified railway systems are involved in renewal processes, which address vehicles, wayside infrastructure and management of fleet of rolling stocks. Railway System Operators (RSOs) test how novel and innovative strategies impact of their own systems in order to reach energy efficiency targets. Due to the intrinsic interaction between the railway traction system and its primary grid, the feasibility of each innovative strategy has to be evaluated in terms of energy and power not only on the railway traction system, but also on its feeding grid. In the actual context forced by the constraint of Covit-19 virus, one of the more relevant strategies applied to urban railway systems is to operate the railway traction system with reduced values of headway. This strategy, which forces repetitive starts, in some cases contemporaneous, of rolling stocks, can produce severe voltage drops on the primary distribution grid. This paper proposes of examining the motion of a fleet of metro trains on a traction system fed by a MV distribution grid of reduced short circuit value. The numerical results point out how constraints imposed by the distribution grid at the Traction Power Substations can influence the control of moving the fleet of rolling stocks on the track.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"29 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81458265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kui Li, Xiang Xie, Kai He, Lei Yao, Zhaozan Feng, Tao Chen
{"title":"Thermal Design of a 2-Phase Flow Cooled Medium-frequency 140kVA Transformer for Railway Applications","authors":"Kui Li, Xiang Xie, Kai He, Lei Yao, Zhaozan Feng, Tao Chen","doi":"10.1109/VPPC49601.2020.9330916","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330916","url":null,"abstract":"In this paper, a cooling scheme and the corresponding thermal design method is proposed for high power high frequency transformer, which is used in power electronic transformer device for railway traction applications. Particularly, to address the overheating problem resulting from dimensional restriction and electrical insulation in railway applications, the cooling scheme based on actively cooled system with R245fa refrigerants is further enhanced by 2-phase flow cooling. The mathematic model of transformer copper and iron loss is first introduced. Subsequently, the required cooling area of transformer core is quantitatively calculated using thermal network method and the total pressure loss and heat transfer in two-phase flow is determined accordingly. Finally, the proposed thermal design method and corresponding cooling scheme are verified through the experiment on a 5.5kHz 140kVA transformer.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"62 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87219644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active Thermal Management for an Automotive Water-Cooled Proton Exchange Membrane Fuel Cell by Using Feedback Control","authors":"Jin Zhang, Ya-Xiong Wang, Hongwen He, Yao Wang","doi":"10.1109/VPPC49601.2020.9330959","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330959","url":null,"abstract":"Proton exchange membrane fuel cell (PEMFC) appears as a green energy to solve the environmental and energy problems in the automotive industry. Temperature changes in PEMFC affect fuel cell’s efficiency and lifetime. If the stack temperature is too low, the electrochemical reaction rate slows down, leading to inefficiency and shortening the working life of the stack. However, too high stack temperature may dry the membrane and decrease proton conductivity, or even destroy the membrane. Therefore, to avoid stack temperature fluctuations and maintain proper stack temperature, a thermal management-oriented model of the vehicular water-cooled PEMFC is presented, which is based on electrochemical reactions and thermodynamics. A PI associated with an ON/OFF feedback controller is designed to control the output mass flow rates of the circulating water pump and the radiator fans. To test the efficacy of the proposed model and controller, different load currents including typical driving cycles are applied. The results indicate that the stack temperature well tracks the reference temperature, and the temperature difference of cooling water in and out of the stack is less than 6°C.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"75 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90265569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mariscotti, D. Giordano, A. D. Femine, D. Gallo, D. Signorino
{"title":"How Pantograph Electric Arcs affect Energy Efficiency in DC Railway Vehicles","authors":"A. Mariscotti, D. Giordano, A. D. Femine, D. Gallo, D. Signorino","doi":"10.1109/VPPC49601.2020.9330954","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330954","url":null,"abstract":"In DC electrified railways pantograph electric arcs represent not only a disturbance, but the step change of the pantograph voltage affects power losses directly and indirectly. The available line voltage is reduced if the train is in traction condition, the arc itself is characterized by ohmic power losses, and the triggered oscillating transient responses are characterized by a net power loss. In addition, if arc occurs during braking the arc voltage suddenly increases the pantograph voltage and may interfere with the dissipative braking chopper, reducing the recovered energy. This work presents the model and analysis of these phenomena with experimental results for arcs measured on a 3 kV dc line in traction and braking conditions.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"18 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86156956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Operational cost analysis of fuel cell electric vehicles under different powertrain-sizing configurations","authors":"Yang Zhou, A. Ravey, M. Péra","doi":"10.1109/VPPC49601.2020.9330986","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330986","url":null,"abstract":"This paper presents an operation cost analysis of a fuel cell/battery-based plug-in hybrid electric vehicle under different sizing configurations. Specifically, the size of major energy source (e.g. the fuel cell system) is kept constant while altering the battery capacity. Dynamic programming is then employed to extract the vehicle’s operation costs imposed by the consumption of hydrogen and electricity power. Afterwards, a numerical analysis of the impacts on fuel economy, fuel cell durability, battery energy utilization rate is conducted, so as to provide useful guidelines to facilitate the powertrain design and the development of corresponding energy management strategies.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86456929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Chada, Ankith Purbai, D. Görges, Achim Ebert, R. Teutsch
{"title":"Ecological Adaptive Cruise Control for Urban Environments using SPaT Information","authors":"S. Chada, Ankith Purbai, D. Görges, Achim Ebert, R. Teutsch","doi":"10.1109/VPPC49601.2020.9330903","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330903","url":null,"abstract":"This paper proposes an ecological adaptive cruise control (EACC) strategy to minimize the energy consumption of an electric vehicle using two linear model predictive controllers (MPCs). In the absence of a preceding vehicle, the first MPC uses the upcoming traffic light signal phase and timing (SPaT) information to track an optimal green-wave velocity to reach the next traffic light signal during green phase. For the preceding vehicle in range scenario, the second MPC follows the leading vehicle by maintaining a desired inter-vehicle distance and strictly adheres to road speed limits. If the upcoming traffic light signal phase is changing to red, the controller uses the SPaT information to plan an energy-efficient stop near the traffic light signal. To evaluate the performance of the proposed strategy, both controllers are tested in a realistic scenario against a baseline controller and furthermore their energy saving benefits are explored. Finally, investigations on computation time reveal that the proposed strategy is capable for online implementation.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"6 2 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78621397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Ju, Yuan Cheng, Mingliang Yang, K. Yao, Ling Ding, S. Cui
{"title":"Loss analysis and calculation of IPMSM with SiC inverter based on field circuit coupling method","authors":"Xiao Ju, Yuan Cheng, Mingliang Yang, K. Yao, Ling Ding, S. Cui","doi":"10.1109/VPPC49601.2020.9330909","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330909","url":null,"abstract":"In the early design stage of electric drive system, electric machine performance and controller performance usually cannot be considered at the same time. The torque and speed range of traction machine is large, and the harmonic loss caused by current harmonic generated by PWM power supply will not be ignored. The working point of electric vehicle traction machine changes frequently. The current harmonics vary with the working point because the electric machine magnetic field saturation degree is different. In order to solve this problem, a simulation model for fast prediction of harmonic current at each working point is established in this paper. Firstly, the analytical models of SiC device and machine loss are analyzed. Then, based on the experimental prototype parameters, the finite element model of the machine is established, and the dq axes current of different working points are extracted. Based on the field circuit coupling method, a system level simulation analysis model is built, which can realize the current harmonic extraction and loss calculation at different working points. Finally, the effectiveness of the model is verified by selecting the corresponding work points. The results show that the optimized switching frequency can further reduce the system loss. Compared with the traditional Si devices, the high switching frequency of SiC is beneficial to further reduce the harmonic loss.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"8 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84771582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energetic Macroscopic Representation of Scalable PMSM for Electric Vehicles","authors":"W. Lhomme, F. Verbelen, M. Ibrahim, K. Stockman","doi":"10.1109/VPPC49601.2020.9330981","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330981","url":null,"abstract":"In this paper, an innovative model structuration is proposed to describe scaled Permanent Magnet Synchronous Machines (PMSM) at system level. By using the Energetic Macroscopic Representation formalism (EMR), the equations of the scaling laws are reorganized. The restructuration consists of a reference PMSM model complemented with two electrical and mechanical power adaptation elements. These latter elements take care of the scaling effects, including the power losses. The methodology is applied to scale the power of a PMSM for an electric vehicle, by a factor of 2. According to the studied designs, an average efficiency from 83.7% to 87.1% is obtained during an urban driving cycle.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"52 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90669098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Multi-Vector Cascaded Model Predictive Control of Induction Motors","authors":"Ling Feng, Jianguo Fu, Cheng Li","doi":"10.1109/VPPC49601.2020.9330845","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330845","url":null,"abstract":"When using single vector model predictive control, the direction of output voltage in each control cycle is limited. Therefore, there is pulsation and a quite large harmonic distortion in stator current. In this paper, a novel cascade multi-vector model predictive control strategy is proposed. Firstly, the model predictive controller is used to replace the traditional linear controller in the external speed loop, and a three-vector model predictive controller is designed in the internal current loop. The amplitude and direction of output voltage vector are adjustable which improves the performance of the current control. As multi-vector model predictive control will increase the switching frequency of the system, we construct a cost function with switching frequency constraints to solve this issue. Finally, the proposed control strategy is verified on the asynchronous motor experiment set that it can improve the current tracking performance and effectively reduce the switching frequency of the inverter while maintaining the speed loop with good dynamic and static performance.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"15 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79837665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rule-Based Energy Management Strategy of Fuel Cell/Ultracapacitor/Battery Vehicles: winner of the IEEE VTS Motor Vehicles Challenge 2020","authors":"A. Ferrara, C. Hametner","doi":"10.1109/VPPC49601.2020.9330930","DOIUrl":"https://doi.org/10.1109/VPPC49601.2020.9330930","url":null,"abstract":"This paper focuses on the energy management of fuel cell/ultracapacitor/battery hybrid vehicles. A robust rule-based strategy is proposed to effectively reduce hydrogen consumption, increase vehicle lifetime, and handle multiple constraints. This strategy won the IEEE VTS Motor Vehicles Challenge 2020. The formulation of the control rules is heavily based on the vehicle model and the analysis of the assigned cost function. A stochastic generation of driving scenarios is proposed to deal with the limited information provided by the challenge, guarantying a robust design of the energy management strategy. The results are analyzed on a large set of synthetic driving cycles.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"80 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88592244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}