燃料电池/超级电容器/电池汽车基于规则的能量管理策略:IEEE VTS汽车挑战赛2020冠军

A. Ferrara, C. Hametner
{"title":"燃料电池/超级电容器/电池汽车基于规则的能量管理策略:IEEE VTS汽车挑战赛2020冠军","authors":"A. Ferrara, C. Hametner","doi":"10.1109/VPPC49601.2020.9330930","DOIUrl":null,"url":null,"abstract":"This paper focuses on the energy management of fuel cell/ultracapacitor/battery hybrid vehicles. A robust rule-based strategy is proposed to effectively reduce hydrogen consumption, increase vehicle lifetime, and handle multiple constraints. This strategy won the IEEE VTS Motor Vehicles Challenge 2020. The formulation of the control rules is heavily based on the vehicle model and the analysis of the assigned cost function. A stochastic generation of driving scenarios is proposed to deal with the limited information provided by the challenge, guarantying a robust design of the energy management strategy. The results are analyzed on a large set of synthetic driving cycles.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"80 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rule-Based Energy Management Strategy of Fuel Cell/Ultracapacitor/Battery Vehicles: winner of the IEEE VTS Motor Vehicles Challenge 2020\",\"authors\":\"A. Ferrara, C. Hametner\",\"doi\":\"10.1109/VPPC49601.2020.9330930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the energy management of fuel cell/ultracapacitor/battery hybrid vehicles. A robust rule-based strategy is proposed to effectively reduce hydrogen consumption, increase vehicle lifetime, and handle multiple constraints. This strategy won the IEEE VTS Motor Vehicles Challenge 2020. The formulation of the control rules is heavily based on the vehicle model and the analysis of the assigned cost function. A stochastic generation of driving scenarios is proposed to deal with the limited information provided by the challenge, guarantying a robust design of the energy management strategy. The results are analyzed on a large set of synthetic driving cycles.\",\"PeriodicalId\":6851,\"journal\":{\"name\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"80 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC49601.2020.9330930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC49601.2020.9330930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文主要研究燃料电池/超级电容器/电池混合动力汽车的能量管理问题。提出了一种基于规则的鲁棒策略,以有效降低氢消耗,延长车辆寿命,并处理多重约束。这一策略赢得了2020年IEEE VTS汽车挑战赛。控制规则的制定在很大程度上是基于车辆模型和分配成本函数的分析。提出了一种随机生成驾驶场景的方法来处理挑战所提供的有限信息,保证了能量管理策略的鲁棒性设计。结果在一组大的合成驾驶循环上进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rule-Based Energy Management Strategy of Fuel Cell/Ultracapacitor/Battery Vehicles: winner of the IEEE VTS Motor Vehicles Challenge 2020
This paper focuses on the energy management of fuel cell/ultracapacitor/battery hybrid vehicles. A robust rule-based strategy is proposed to effectively reduce hydrogen consumption, increase vehicle lifetime, and handle multiple constraints. This strategy won the IEEE VTS Motor Vehicles Challenge 2020. The formulation of the control rules is heavily based on the vehicle model and the analysis of the assigned cost function. A stochastic generation of driving scenarios is proposed to deal with the limited information provided by the challenge, guarantying a robust design of the energy management strategy. The results are analyzed on a large set of synthetic driving cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信