基于spv信息的城市环境生态自适应巡航控制

S. Chada, Ankith Purbai, D. Görges, Achim Ebert, R. Teutsch
{"title":"基于spv信息的城市环境生态自适应巡航控制","authors":"S. Chada, Ankith Purbai, D. Görges, Achim Ebert, R. Teutsch","doi":"10.1109/VPPC49601.2020.9330903","DOIUrl":null,"url":null,"abstract":"This paper proposes an ecological adaptive cruise control (EACC) strategy to minimize the energy consumption of an electric vehicle using two linear model predictive controllers (MPCs). In the absence of a preceding vehicle, the first MPC uses the upcoming traffic light signal phase and timing (SPaT) information to track an optimal green-wave velocity to reach the next traffic light signal during green phase. For the preceding vehicle in range scenario, the second MPC follows the leading vehicle by maintaining a desired inter-vehicle distance and strictly adheres to road speed limits. If the upcoming traffic light signal phase is changing to red, the controller uses the SPaT information to plan an energy-efficient stop near the traffic light signal. To evaluate the performance of the proposed strategy, both controllers are tested in a realistic scenario against a baseline controller and furthermore their energy saving benefits are explored. Finally, investigations on computation time reveal that the proposed strategy is capable for online implementation.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"6 2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ecological Adaptive Cruise Control for Urban Environments using SPaT Information\",\"authors\":\"S. Chada, Ankith Purbai, D. Görges, Achim Ebert, R. Teutsch\",\"doi\":\"10.1109/VPPC49601.2020.9330903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an ecological adaptive cruise control (EACC) strategy to minimize the energy consumption of an electric vehicle using two linear model predictive controllers (MPCs). In the absence of a preceding vehicle, the first MPC uses the upcoming traffic light signal phase and timing (SPaT) information to track an optimal green-wave velocity to reach the next traffic light signal during green phase. For the preceding vehicle in range scenario, the second MPC follows the leading vehicle by maintaining a desired inter-vehicle distance and strictly adheres to road speed limits. If the upcoming traffic light signal phase is changing to red, the controller uses the SPaT information to plan an energy-efficient stop near the traffic light signal. To evaluate the performance of the proposed strategy, both controllers are tested in a realistic scenario against a baseline controller and furthermore their energy saving benefits are explored. Finally, investigations on computation time reveal that the proposed strategy is capable for online implementation.\",\"PeriodicalId\":6851,\"journal\":{\"name\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"6 2 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC49601.2020.9330903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC49601.2020.9330903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用两个线性模型预测控制器(mpc)实现电动汽车能耗最小化的生态自适应巡航控制(EACC)策略。在没有前车的情况下,第一个MPC使用即将到来的交通灯信号相位和时序(SPaT)信息来跟踪最佳绿波速度,以便在绿灯阶段到达下一个交通灯信号。对于前一辆车,第二辆MPC跟随前一辆车,保持期望的车间距离,并严格遵守道路速度限制。如果即将到来的交通灯信号阶段变为红色,控制器使用该信息在交通灯信号附近计划一个节能停车。为了评估所提出的策略的性能,在现实场景中对两个控制器进行了基准控制器的测试,并进一步探讨了它们的节能效益。最后,对计算时间的研究表明,该策略可以在线实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecological Adaptive Cruise Control for Urban Environments using SPaT Information
This paper proposes an ecological adaptive cruise control (EACC) strategy to minimize the energy consumption of an electric vehicle using two linear model predictive controllers (MPCs). In the absence of a preceding vehicle, the first MPC uses the upcoming traffic light signal phase and timing (SPaT) information to track an optimal green-wave velocity to reach the next traffic light signal during green phase. For the preceding vehicle in range scenario, the second MPC follows the leading vehicle by maintaining a desired inter-vehicle distance and strictly adheres to road speed limits. If the upcoming traffic light signal phase is changing to red, the controller uses the SPaT information to plan an energy-efficient stop near the traffic light signal. To evaluate the performance of the proposed strategy, both controllers are tested in a realistic scenario against a baseline controller and furthermore their energy saving benefits are explored. Finally, investigations on computation time reveal that the proposed strategy is capable for online implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信