2020 IEEE 3rd International Conference on Dielectrics (ICD)最新文献

筛选
英文 中文
Charge Accumulation at High DC Voltage and Superimposed Medium Frequency AC Voltage 高直流电压和叠加中频交流电压下的电荷积累
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341963
F. Seifert, I. Porizka, C. Leu
{"title":"Charge Accumulation at High DC Voltage and Superimposed Medium Frequency AC Voltage","authors":"F. Seifert, I. Porizka, C. Leu","doi":"10.1109/ICD46958.2020.9341963","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341963","url":null,"abstract":"A big challenge for future electric grids is the energetic coupling of DC systems. This can be realized by Solid-State-Transformers with an operating medium frequency AC voltage generated by power electronic converters. The DC voltage and the superimposed medium frequency AC voltage stress the insulation system because of, for instance, partial discharges. In this paper, the results of the measurement of the charge accumulation by corona discharges at this composite voltage at a polyethylene surface are presented.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"112 1","pages":"333-337"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73999703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Optimization of Filler Loading of Multi-Particle Mineral Oil Nanofluid for Transformer Insulation 变压器绝缘用多颗粒矿物油纳米流体填料填充优化研究
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341838
S. Sarov Mohan, P. Preetha
{"title":"Optimization of Filler Loading of Multi-Particle Mineral Oil Nanofluid for Transformer Insulation","authors":"S. Sarov Mohan, P. Preetha","doi":"10.1109/ICD46958.2020.9341838","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341838","url":null,"abstract":"Transformers are critical components of electric power transmission and distribution system. Mineral oil (MO) based multi-particle nanofluid (MPNF) were prepared with an intention to enhance electrical properties of MO by incorporating $A1_{2}O_{3}$ and TiO2 nanoparticles. Filler loading concentration and mixing ratio, which is the ratio between $A1_{2}O_{3}$ and TiO2 nanoparticle content is optimized by analyzing the simulation results. AC breakdown strength of the prepared samples were measured. It is found that, MPNF sample having a filler loading concentration of 0.1weight percentage (wt%) and mixing ratio of 9:1 shows highest AC breakdown strength. This sample shows an enhancement of 38.4%, 15.86%, and 17.41%, w.r.t pure oil, $A1_{2}O_{3}$ and TiO2 NFs having same filler loading concentration.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"14 1","pages":"712-715"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74758347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocomposites 微尺度注射成型筛选pp基电缆绝缘纳米复合材料的可行性
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341820
I. Rytöluoto, Eetta Saarimäki, J. Pelto, M. Paajanen, Xiaozhen He, R. Anyszka, Amirhossein Mahtabani, W. Dierkes, P. Seri, H. Naderiallaf, K. Lahti, Minna Niittymäki
{"title":"Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocomposites","authors":"I. Rytöluoto, Eetta Saarimäki, J. Pelto, M. Paajanen, Xiaozhen He, R. Anyszka, Amirhossein Mahtabani, W. Dierkes, P. Seri, H. Naderiallaf, K. Lahti, Minna Niittymäki","doi":"10.1109/ICD46958.2020.9341820","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341820","url":null,"abstract":"This study presents a critical evaluation of the effect of two different sample manufacturing techniques on the morphological and dielectric properties of polypropylene (PP)-based nanocomposites, namely mini-scale injection molding (IM) vs. pilot-scale cast film extrusion. Polarized light microscopy revealed that the IM specimen morphology exhibited a layered “skin-core” type morphology, largely differing from the spherulitic morphology of the corresponding extruded cast films. Higher degree of crystallinity in the IM specimens was evidenced by calorimetric and X-ray diffraction methods. The processing-dependent morphological differences were found to affect the isothermal charging current (ICC) and thermally stimulated depolarization current (TSDC) characteristics due to differences in charge mobility and trapping, thus making direct comparison of IM and cast film specimens non-straightforward. Nevertheless, mini-scale injection molding can be seen as a resource-efficient sample manufacturing method for facilitating early-stage screening of the best-performing material candidates, given that the morphological features are carefully taken into account.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"13 1","pages":"209-212"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83358180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Assessment of Cable Aging for Nuclear Power Plants I&C Cable via Time-Frequency Domain Reflectometry 用时频域反射法评估核电站I&C电缆老化
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341985
Gu-Young Kwon, Yeong Ho Lee, S. Bang, G. Ji, Geon Seok Lee, Z. A. Tamus, Y. Shin
{"title":"Assessment of Cable Aging for Nuclear Power Plants I&C Cable via Time-Frequency Domain Reflectometry","authors":"Gu-Young Kwon, Yeong Ho Lee, S. Bang, G. Ji, Geon Seok Lee, Z. A. Tamus, Y. Shin","doi":"10.1109/ICD46958.2020.9341985","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341985","url":null,"abstract":"Instrumentation and control (I&C) cable connected between numerous sensors and main control room contributes to the safe operation of nuclear power plants (NPPs). Some of I&C cables are installed in the place exposed to cable degradation causes such as mechanical damage, heat, and radiation. In this paper, two cable aging assessment parameters extracted from the results of time-frequency domain reflectometry (TFDR) is proposed to maintain the reliable and stable operation of the NPPs. To verify the proposed method, two different EPR insulated cables from distinct manufactures are adopted to accelerated thermal aging test. After aging, the assessment parameters of each cable are calculated, and the trend and linearity of the assessment parameters are observed. It is expected that the proposed method allows to ensure the safe operation of nuclear power plant.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"18 1","pages":"77-80"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77697346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Monitored Migration of Additives from Thermally Upgraded Paper into Various Insulation Liquids 热升级纸中添加剂向各种绝缘液体迁移的监测
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341830
M. Meissner, E. Matić, S. Schober, Martin Darmann, M. Mittelbach
{"title":"Monitored Migration of Additives from Thermally Upgraded Paper into Various Insulation Liquids","authors":"M. Meissner, E. Matić, S. Schober, Martin Darmann, M. Mittelbach","doi":"10.1109/ICD46958.2020.9341830","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341830","url":null,"abstract":"To determine the long-term persistence of stabilizing additives in thermally upgraded Kraft paper insulation material under operation conditions, the nitrogen migration from the solid material into the encircling insulation material was monitored as part of a large-scale ageing study. Therefore, thermally upgraded as well as normal Kraft paper, combined with pressboard, copper and sheet metal in representative amounts and ratios, was immersed in different types of insulation liquids (mineral oil, G-t-L oil, synthetic as well as natural ester). A continuous 56-day ageing experiment under oxygen-free conditions at elevated temperatures (130 and 150°C) was conducted, with a continuous sampling interval of 2 weeks. The nitrogen concentration of the embedding insulation liquids stayed constant for every insulation liquid aged with natural Kraft paper material, whereas a clear increase of nitrogen levels could be observed over time as soon as thermally upgraded Kraft paper was immersed into the insulation liquids. For prolonged ageing periods at 150°C the measured nitrogen levels in the insulation liquid could rise by as much as 120 ppm, corresponding to nearly 0.3% of dry insulation paper mass, indicating a significant loss of nitrogen-rich stabilizing agents into the corresponding insulation liquid just within weeks of ageing.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"144 1","pages":"649-652"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76806181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary Development and Application of a Stress-Strength Model for Reliability Estimation of Aged LV Cables for Nuclear Power Plants 核电厂低压电缆老化可靠性应力-强度模型的初步建立与应用
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341856
D. Fabiani, G. Mazzanti, S. V. Suraci, B. Diban
{"title":"Preliminary Development and Application of a Stress-Strength Model for Reliability Estimation of Aged LV Cables for Nuclear Power Plants","authors":"D. Fabiani, G. Mazzanti, S. V. Suraci, B. Diban","doi":"10.1109/ICD46958.2020.9341856","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341856","url":null,"abstract":"As a part of the H2020 EU Project called “TeaM Cables” - which has, among its aims, modelling reliability of Nuclear Power Plant (NPP) cables - the goal of this paper is to develop a model for the prediction of the residual reliability of Low Voltage (LV) cables for NPPs subjected to gamma radiation stress. The model estimates the probability that such cables withstand random stress overshoot in-service.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"122 1","pages":"37-40"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88688594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Research of internal charging characteristics of Polyetherimide irradiated by energetic electrons 高能电子辐照下聚醚酰亚胺内部充电特性的研究
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341947
Penghui Shang, Jiang Wu, Xiaoquan Zheng
{"title":"Research of internal charging characteristics of Polyetherimide irradiated by energetic electrons","authors":"Penghui Shang, Jiang Wu, Xiaoquan Zheng","doi":"10.1109/ICD46958.2020.9341947","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341947","url":null,"abstract":"In the space irradiation environment, the energetic electrons can penetrate the shielding of the spacecraft and deposit in the dielectric, resulting in internal charging. The deposit charge is difficult to release due to the very low conductivity. When the electric field established by the deposit charge exceeds the threshold of the dielectric, the electrostatic discharges will occur. It is one of the important factors threatening the safe operation of spacecraft. Polyetherimide (PEI) is a high-performance thermoplastic, it maintains desirable electrical and mechanical properties up to 300°C and above. Due to the good processing behavior, it is considered to be used to manufacture the complex components of spacecraft. However, there is rare literature on the internal charging of polyetherimide. This is the primary purpose of this paper. In this paper, A threedimensional charge transport equation for internal charging in dielectric is established. Geant4 is used to calculate the charge deposition rate and energy deposition rate during the interaction of electrons and PEI. The electric field distribution in PEI under different initial energies, different beam densities and different grounding modes is calculated. Research shows that the maximum internal electric field of PEI irradiated by electrons depends on the beam current density, initial energy and the grounding types, which needs to be analyzed based on the operating environment.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"116 1","pages":"401-404"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87667275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core-shell piezoelectric nanofibers for multifunctional composite materials 多功能复合材料的核壳型压电纳米纤维
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341920
D. Fabiani, A. Zucchelli, T. Brugo, G. Selleri, F. Grolli, M. Speranza
{"title":"Core-shell piezoelectric nanofibers for multifunctional composite materials","authors":"D. Fabiani, A. Zucchelli, T. Brugo, G. Selleri, F. Grolli, M. Speranza","doi":"10.1109/ICD46958.2020.9341920","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341920","url":null,"abstract":"This paper deals with the realization of core-shell piezoelectric nanofibers for the production of a multifunctional composite material. The nanofibers are integrated in a hosting material, such as epoxy resin or PDMS (silicon rubber). The aim of this work is to realize a material that is able to recognize a mechanical impact thanks to the specific disposition of the piezoelectric nanofibers.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"51 1","pages":"325-328"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90230244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrical characterization of low-density solid insulating fillers for hollow-core composite insulators 空心复合绝缘子用低密度固体绝缘填料的电学特性
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341821
Diego Machetti, E. Moal, J. Seifert, R. Puffer
{"title":"Electrical characterization of low-density solid insulating fillers for hollow-core composite insulators","authors":"Diego Machetti, E. Moal, J. Seifert, R. Puffer","doi":"10.1109/ICD46958.2020.9341821","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341821","url":null,"abstract":"Insulating materials that can fill the internal space of hollow-core composite insulators (HCIs) are gaining relevance due to the new areas of applications of these insulators. Such materials must be light and have sufficient electrical properties to preserve the integrity of the inner room of the HCIs. The electrical properties of a light polymeric foam, known as dry syntactic foam (DSF), which is based on two types of hollow microspheres (HMSs), were investigated. Special emphasis is placed on the influence of the density of the resulting material regarding the electrical properties. The results show that the dissipation factor and the relative permittivity have a proportional relationship with the density. Furthermore, two main properties, namely the number of interfaces and the pore size are found to influence the breakdown strength of the DSF.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"42 1","pages":"673-676"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90262414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Charge Accumulation/Decumulation on DC-GIS Spacer under 10,000-hour DC Field Application DC- gis间隔器10000小时直流现场应用下的电荷积累/衰减
2020 IEEE 3rd International Conference on Dielectrics (ICD) Pub Date : 2020-07-05 DOI: 10.1109/ICD46958.2020.9341834
Hajime Shimakawa, A. Kumada, K. Hidaka, T. Yasuoka, Y. Hoshina, M. Shiiki
{"title":"Charge Accumulation/Decumulation on DC-GIS Spacer under 10,000-hour DC Field Application","authors":"Hajime Shimakawa, A. Kumada, K. Hidaka, T. Yasuoka, Y. Hoshina, M. Shiiki","doi":"10.1109/ICD46958.2020.9341834","DOIUrl":"https://doi.org/10.1109/ICD46958.2020.9341834","url":null,"abstract":"Surface charges on an insulating epoxy spacer in DC-GIS under high DC electric field lead to decrease breakdown voltage on the spacer, but charge accumulation phenomena of insulators are not clear in detail. In this paper, surface charge distributions on the epoxy model spacer were measured under DC-GIS simulated environment during the DC voltage application for 10,000 hours and the short circuit for 2400 hours. The saturation tendency of charge accumulation in which only the homo-charges develop concentrically near the electrodes was obtained. The time constant of charge accumulation below 20? agreed with the theoretical value calculated from the equivalent circuit. Surface charge characteristics with irregular charge, the ones during charge decumulation, and the relationship between charging saturation tendency and temperature were also obtained.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"81 1","pages":"455-458"},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90490901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信