{"title":"用热法测量2 μm厚聚丙烯试样在电压作用下的界面电荷效应","authors":"Céline Corbrion, S. Holé","doi":"10.1109/ICD46958.2020.9342009","DOIUrl":null,"url":null,"abstract":"A 2-$\\mu$m-thick polypropylene sample has been subjected to 10 kV/mm for 4 weeks. Thanks to surface temperature measurement along with heat pulse measurement, it is possible to detect the position at which the electric field varies inside the sample even without inverse convolution calculation.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"8 10 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface charge effect measurement in 2-μm-thick polypropylene sample under voltage with thermal method\",\"authors\":\"Céline Corbrion, S. Holé\",\"doi\":\"10.1109/ICD46958.2020.9342009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 2-$\\\\mu$m-thick polypropylene sample has been subjected to 10 kV/mm for 4 weeks. Thanks to surface temperature measurement along with heat pulse measurement, it is possible to detect the position at which the electric field varies inside the sample even without inverse convolution calculation.\",\"PeriodicalId\":6795,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"volume\":\"8 10 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD46958.2020.9342009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD46958.2020.9342009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interface charge effect measurement in 2-μm-thick polypropylene sample under voltage with thermal method
A 2-$\mu$m-thick polypropylene sample has been subjected to 10 kV/mm for 4 weeks. Thanks to surface temperature measurement along with heat pulse measurement, it is possible to detect the position at which the electric field varies inside the sample even without inverse convolution calculation.