空心复合绝缘子用低密度固体绝缘填料的电学特性

Diego Machetti, E. Moal, J. Seifert, R. Puffer
{"title":"空心复合绝缘子用低密度固体绝缘填料的电学特性","authors":"Diego Machetti, E. Moal, J. Seifert, R. Puffer","doi":"10.1109/ICD46958.2020.9341821","DOIUrl":null,"url":null,"abstract":"Insulating materials that can fill the internal space of hollow-core composite insulators (HCIs) are gaining relevance due to the new areas of applications of these insulators. Such materials must be light and have sufficient electrical properties to preserve the integrity of the inner room of the HCIs. The electrical properties of a light polymeric foam, known as dry syntactic foam (DSF), which is based on two types of hollow microspheres (HMSs), were investigated. Special emphasis is placed on the influence of the density of the resulting material regarding the electrical properties. The results show that the dissipation factor and the relative permittivity have a proportional relationship with the density. Furthermore, two main properties, namely the number of interfaces and the pore size are found to influence the breakdown strength of the DSF.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"42 1","pages":"673-676"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrical characterization of low-density solid insulating fillers for hollow-core composite insulators\",\"authors\":\"Diego Machetti, E. Moal, J. Seifert, R. Puffer\",\"doi\":\"10.1109/ICD46958.2020.9341821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insulating materials that can fill the internal space of hollow-core composite insulators (HCIs) are gaining relevance due to the new areas of applications of these insulators. Such materials must be light and have sufficient electrical properties to preserve the integrity of the inner room of the HCIs. The electrical properties of a light polymeric foam, known as dry syntactic foam (DSF), which is based on two types of hollow microspheres (HMSs), were investigated. Special emphasis is placed on the influence of the density of the resulting material regarding the electrical properties. The results show that the dissipation factor and the relative permittivity have a proportional relationship with the density. Furthermore, two main properties, namely the number of interfaces and the pore size are found to influence the breakdown strength of the DSF.\",\"PeriodicalId\":6795,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"volume\":\"42 1\",\"pages\":\"673-676\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD46958.2020.9341821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD46958.2020.9341821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于空心复合绝缘子的新应用领域,填充空心复合绝缘子内部空间的绝缘材料越来越受到重视。这种材料必须很轻,并具有足够的电气性能,以保持hci内部房间的完整性。研究了以两种空心微球(hms)为基材的干式复合轻聚合物泡沫(DSF)的电学性能。特别强调的是所得到的材料的密度对电性能的影响。结果表明,耗散系数和相对介电常数与密度成正比关系。此外,发现两个主要性质,即界面数量和孔径大小影响了DSF的击穿强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical characterization of low-density solid insulating fillers for hollow-core composite insulators
Insulating materials that can fill the internal space of hollow-core composite insulators (HCIs) are gaining relevance due to the new areas of applications of these insulators. Such materials must be light and have sufficient electrical properties to preserve the integrity of the inner room of the HCIs. The electrical properties of a light polymeric foam, known as dry syntactic foam (DSF), which is based on two types of hollow microspheres (HMSs), were investigated. Special emphasis is placed on the influence of the density of the resulting material regarding the electrical properties. The results show that the dissipation factor and the relative permittivity have a proportional relationship with the density. Furthermore, two main properties, namely the number of interfaces and the pore size are found to influence the breakdown strength of the DSF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信