I. Rytöluoto, Eetta Saarimäki, J. Pelto, M. Paajanen, Xiaozhen He, R. Anyszka, Amirhossein Mahtabani, W. Dierkes, P. Seri, H. Naderiallaf, K. Lahti, Minna Niittymäki
{"title":"微尺度注射成型筛选pp基电缆绝缘纳米复合材料的可行性","authors":"I. Rytöluoto, Eetta Saarimäki, J. Pelto, M. Paajanen, Xiaozhen He, R. Anyszka, Amirhossein Mahtabani, W. Dierkes, P. Seri, H. Naderiallaf, K. Lahti, Minna Niittymäki","doi":"10.1109/ICD46958.2020.9341820","DOIUrl":null,"url":null,"abstract":"This study presents a critical evaluation of the effect of two different sample manufacturing techniques on the morphological and dielectric properties of polypropylene (PP)-based nanocomposites, namely mini-scale injection molding (IM) vs. pilot-scale cast film extrusion. Polarized light microscopy revealed that the IM specimen morphology exhibited a layered “skin-core” type morphology, largely differing from the spherulitic morphology of the corresponding extruded cast films. Higher degree of crystallinity in the IM specimens was evidenced by calorimetric and X-ray diffraction methods. The processing-dependent morphological differences were found to affect the isothermal charging current (ICC) and thermally stimulated depolarization current (TSDC) characteristics due to differences in charge mobility and trapping, thus making direct comparison of IM and cast film specimens non-straightforward. Nevertheless, mini-scale injection molding can be seen as a resource-efficient sample manufacturing method for facilitating early-stage screening of the best-performing material candidates, given that the morphological features are carefully taken into account.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"13 1","pages":"209-212"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocomposites\",\"authors\":\"I. Rytöluoto, Eetta Saarimäki, J. Pelto, M. Paajanen, Xiaozhen He, R. Anyszka, Amirhossein Mahtabani, W. Dierkes, P. Seri, H. Naderiallaf, K. Lahti, Minna Niittymäki\",\"doi\":\"10.1109/ICD46958.2020.9341820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a critical evaluation of the effect of two different sample manufacturing techniques on the morphological and dielectric properties of polypropylene (PP)-based nanocomposites, namely mini-scale injection molding (IM) vs. pilot-scale cast film extrusion. Polarized light microscopy revealed that the IM specimen morphology exhibited a layered “skin-core” type morphology, largely differing from the spherulitic morphology of the corresponding extruded cast films. Higher degree of crystallinity in the IM specimens was evidenced by calorimetric and X-ray diffraction methods. The processing-dependent morphological differences were found to affect the isothermal charging current (ICC) and thermally stimulated depolarization current (TSDC) characteristics due to differences in charge mobility and trapping, thus making direct comparison of IM and cast film specimens non-straightforward. Nevertheless, mini-scale injection molding can be seen as a resource-efficient sample manufacturing method for facilitating early-stage screening of the best-performing material candidates, given that the morphological features are carefully taken into account.\",\"PeriodicalId\":6795,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"volume\":\"13 1\",\"pages\":\"209-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD46958.2020.9341820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD46958.2020.9341820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocomposites
This study presents a critical evaluation of the effect of two different sample manufacturing techniques on the morphological and dielectric properties of polypropylene (PP)-based nanocomposites, namely mini-scale injection molding (IM) vs. pilot-scale cast film extrusion. Polarized light microscopy revealed that the IM specimen morphology exhibited a layered “skin-core” type morphology, largely differing from the spherulitic morphology of the corresponding extruded cast films. Higher degree of crystallinity in the IM specimens was evidenced by calorimetric and X-ray diffraction methods. The processing-dependent morphological differences were found to affect the isothermal charging current (ICC) and thermally stimulated depolarization current (TSDC) characteristics due to differences in charge mobility and trapping, thus making direct comparison of IM and cast film specimens non-straightforward. Nevertheless, mini-scale injection molding can be seen as a resource-efficient sample manufacturing method for facilitating early-stage screening of the best-performing material candidates, given that the morphological features are carefully taken into account.