Fei Wang, Pengcheng Wang, James Jenkinson, Haowei Zhang, Fan Zheng, Li Sun
{"title":"High Performance Microcrack-based MWCNT-rubber Strain Sensor","authors":"Fei Wang, Pengcheng Wang, James Jenkinson, Haowei Zhang, Fan Zheng, Li Sun","doi":"10.1109/NMDC50713.2021.9677534","DOIUrl":"https://doi.org/10.1109/NMDC50713.2021.9677534","url":null,"abstract":"Here we report on the design, synthesis and characterization of a stretchable strain sensor using a cracked multi-walled carbon nanotube film plotted on an elastomer sheet substrate. This bilayer sensor was developed for measuring strains at levels much higher than the conventional metallic foil-based strain gauges; while achieving higher gauge factor, lower hysteresis and improved linearity comparing to other current advanced flexible strain sensors. Such improved piezoresistive responses originate from reproducible opening and closing of the uniformly distributed, high density microcracks that were generated in the carbon nanotube thin film during controlled pre-stretch training. The constraining of microcrack opening-and-closing and nanotube rotation help to stabilize and mitigate large strains and significant resistance variation, leading to superior mechano-electric performances.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"146 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77027312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan T. Cook, J. Mahon, W. Emmerling, Lei Yu, R. Krchnavek, Wei Xue
{"title":"PMMA Nanocomposite Based Cryogenic Dielectrics for High-Temperature Superconducting (HTS) Cables","authors":"Jordan T. Cook, J. Mahon, W. Emmerling, Lei Yu, R. Krchnavek, Wei Xue","doi":"10.1109/NMDC50713.2021.9677481","DOIUrl":"https://doi.org/10.1109/NMDC50713.2021.9677481","url":null,"abstract":"High-temperature superconducting (HTS) cable systems delaminate at 175°C, necessitating a low processing temperature dielectric coating. A polymer nanocomposite can be prepared at temperatures below the HTS cable delamination temperature, mitigating this issue. The proposed polymer nanocomposite was composed of polymethyl methacrylate (PMMA) and impregnated with silicon dioxide (SiO2) to improve the dielectric performance of the base polymer. Dielectric breakdown testing shows a significant increase in the dielectric strength of PMMA/SiO2 composites at cryogenic temperatures when compared to room temperature testing. The increase is most significant across higher filler concentrations where the dielectric strength more than triples over room temperature values from 60–90 kV/mm to ~290 kV/mm. The impact a colder testing environment has on dielectric performance makes PMMA/SiO2 nanocomposites a promising low temperature processing dielectric for adoption into HTS cable systems.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82467588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Dutta, C. Medina-Bailón, N. Xeni, V. Georgiev, A. Asenov
{"title":"Density Gradient Based Quantum-Corrected 3D Drift-Diffusion Simulator for Nanoscale MOSFETs","authors":"T. Dutta, C. Medina-Bailón, N. Xeni, V. Georgiev, A. Asenov","doi":"10.1109/NMDC50713.2021.9677480","DOIUrl":"https://doi.org/10.1109/NMDC50713.2021.9677480","url":null,"abstract":"In this work, we have developed a solver for the three-dimensional density gradient (DG) equation which is used to apply quantum corrections (QC) to the classical drift-diffusion (DD) simulator in a self-consistent manner. This module has been implemented in C++ using the finite volume method and has been incorporated into NESS (Nano-Electronic Simulation Software) which is being developed in the Device Modelling Group, University of Glasgow. Here, we summarise the implementation details and particularly highlight the impact of the three anisotropic DG masses, which are used as fitting parameters, on the charge profiles and current-voltage (I-V) characteristics in nano-transistors.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"54 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84471012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morvan Marjorie, Buso David, Ternisien Marc, R. Cedric, El Housseiny Houssein, Zissis Georges
{"title":"Qualitative Study of the Injection mechanism in N,N'-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13) based Vertical Organic Field-Effect Transistors","authors":"Morvan Marjorie, Buso David, Ternisien Marc, R. Cedric, El Housseiny Houssein, Zissis Georges","doi":"10.1109/nmdc50713.2021.9677496","DOIUrl":"https://doi.org/10.1109/nmdc50713.2021.9677496","url":null,"abstract":"","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86266509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphenized Papertronic Devices using Blue Laser ablated Polyimide Resin Paper","authors":"Pavar Sai Kumar, K. Gohel, S. Goel","doi":"10.1109/NMDC50713.2021.9677540","DOIUrl":"https://doi.org/10.1109/NMDC50713.2021.9677540","url":null,"abstract":"Herein, a new method for fabricating graphenized material on paper coated with a microfilm thick polyimide (PI) resin for multifunctional applications is presented. Rather than using a traditional infrared CO2 laser, an inexpensive, low-power 450 nm blue light laser was used to create highly conductive graphenized paper within minutes. The PI resin was coated on Whatman grade 1 paper prior laser ablation. The resulting Laser-Induced Graphene (LIG) material was thoroughly characterized and electrical conductivity of >2000 S/m was measured. As a proof of concept for wearable electronic applications, the generated versatile graphenized conductive substrate was harnessed for strain sensing application.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84704183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. P. R. S. K. Ogirala, Savithri Padma Priya V, Arunmetha Sundaramoorthy
{"title":"SWCNT and PANI Nanocomposite Thin Films Fabrication for Improved EMI Shielding Effectiveness","authors":"V. P. R. S. K. Ogirala, Savithri Padma Priya V, Arunmetha Sundaramoorthy","doi":"10.1109/NMDC50713.2021.9677499","DOIUrl":"https://doi.org/10.1109/NMDC50713.2021.9677499","url":null,"abstract":"Thin films using Single Walled Carbon Nano Tubes with Polyaniline (SWCNT/ PANI) were fabricated through various techniques for Electromagnetic Interference (EMI) shielding applications over X - band. SWCNT wt% is maintained uniformly for all the samples. The Shielding Effectiveness (SE) due to microwave absorption and reflection mechanisms of all the three samples was measured through Vector Network Analyzer (VNA). The total SE obtained from samples fabricated using various techniques resulted in a maximum of 56.9 dB (which is equal to 1.4225 dB/µm). These results emphasize that the SWCNT/PANI Nanocomposite (SPN) thin films fabricated are promising materials for electromagnetic shielding applications. Apart from the SE characteristics, the fabrication processes, morphology and structure of the composites were analyzed to perceive the best fabrication technique for preparation of the nanocomposites for EMI shielding.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85443176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lina Tizani, B. Mohammad, M. Rezeq, Ahmed Mahdy Yassin
{"title":"Electrical characteristics of Rectenna Integrated Au/HfO2/Pt and CNT Diodes","authors":"Lina Tizani, B. Mohammad, M. Rezeq, Ahmed Mahdy Yassin","doi":"10.1109/NMDC50713.2021.9677486","DOIUrl":"https://doi.org/10.1109/NMDC50713.2021.9677486","url":null,"abstract":"Optical antennas represent an optical detector similar to radiofrequency antennas but operating in the optical regime. Nowadays, optical antennas are attracting a lot of attention due to their enormous potential for applications in nanoscale optical microscopy, spectroscopy, solar energy conversion, integrated optical nano-circuitry, and molecular sensing, etc.[1]. This increased focus is due to the progress in nano-manufacturing technologies, which makes it possible to utilize sub-wavelength plasmonic structures in different shapes and sizes [2]. Different shapes of the apertures are evaluated for bio-sensing and in the infrared domain such as H-shape, cross shape as well as quad-triangles [3], and bowtie [4]. One fabrication process that can be very helpful in the fabrication of nano-antennas at a small scale (nm and $mu mathrm{m}$ scale) is utilizing nano-probe technologies for forming nano-Schottky based tunneling diode rectifiers [5].","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"21 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82129524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abstract for IEEE NMDC 2021, October 17-20, 2021, Vancouver (Canada) (Energy harvesting at millimeter-waves exploiting dielectric resonator antennas (DRA) on Silicon)","authors":"S. Trovarello, D. Masotti, A. Costanzo","doi":"10.1109/nmdc50713.2021.9677520","DOIUrl":"https://doi.org/10.1109/nmdc50713.2021.9677520","url":null,"abstract":"","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76910661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Mazières, R. Pascaud, L. Liard, S. Dap, R. Clergereaux, O. Pascal
{"title":"Time reversal plasmas as a versatile space-time patterning deposition method","authors":"V. Mazières, R. Pascaud, L. Liard, S. Dap, R. Clergereaux, O. Pascal","doi":"10.1109/nmdc50713.2021.9677515","DOIUrl":"https://doi.org/10.1109/nmdc50713.2021.9677515","url":null,"abstract":"","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87764426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}