{"title":"用蓝色激光烧蚀聚酰亚胺树脂纸制备石墨化纸电子器件","authors":"Pavar Sai Kumar, K. Gohel, S. Goel","doi":"10.1109/NMDC50713.2021.9677540","DOIUrl":null,"url":null,"abstract":"Herein, a new method for fabricating graphenized material on paper coated with a microfilm thick polyimide (PI) resin for multifunctional applications is presented. Rather than using a traditional infrared CO2 laser, an inexpensive, low-power 450 nm blue light laser was used to create highly conductive graphenized paper within minutes. The PI resin was coated on Whatman grade 1 paper prior laser ablation. The resulting Laser-Induced Graphene (LIG) material was thoroughly characterized and electrical conductivity of >2000 S/m was measured. As a proof of concept for wearable electronic applications, the generated versatile graphenized conductive substrate was harnessed for strain sensing application.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Graphenized Papertronic Devices using Blue Laser ablated Polyimide Resin Paper\",\"authors\":\"Pavar Sai Kumar, K. Gohel, S. Goel\",\"doi\":\"10.1109/NMDC50713.2021.9677540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, a new method for fabricating graphenized material on paper coated with a microfilm thick polyimide (PI) resin for multifunctional applications is presented. Rather than using a traditional infrared CO2 laser, an inexpensive, low-power 450 nm blue light laser was used to create highly conductive graphenized paper within minutes. The PI resin was coated on Whatman grade 1 paper prior laser ablation. The resulting Laser-Induced Graphene (LIG) material was thoroughly characterized and electrical conductivity of >2000 S/m was measured. As a proof of concept for wearable electronic applications, the generated versatile graphenized conductive substrate was harnessed for strain sensing application.\",\"PeriodicalId\":6742,\"journal\":{\"name\":\"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC50713.2021.9677540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC50713.2021.9677540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graphenized Papertronic Devices using Blue Laser ablated Polyimide Resin Paper
Herein, a new method for fabricating graphenized material on paper coated with a microfilm thick polyimide (PI) resin for multifunctional applications is presented. Rather than using a traditional infrared CO2 laser, an inexpensive, low-power 450 nm blue light laser was used to create highly conductive graphenized paper within minutes. The PI resin was coated on Whatman grade 1 paper prior laser ablation. The resulting Laser-Induced Graphene (LIG) material was thoroughly characterized and electrical conductivity of >2000 S/m was measured. As a proof of concept for wearable electronic applications, the generated versatile graphenized conductive substrate was harnessed for strain sensing application.