2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)最新文献

筛选
英文 中文
Effect of Lead and Bismuth on the De-Wetting of Continuous Argentum Films 铅和铋对连续银膜脱湿的影响
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568560
A. Nevgasimov, S. Dukarov, S. Petrushenko, R. Sukhov, Z. Bloshenko, V. Sukhov
{"title":"Effect of Lead and Bismuth on the De-Wetting of Continuous Argentum Films","authors":"A. Nevgasimov, S. Dukarov, S. Petrushenko, R. Sukhov, Z. Bloshenko, V. Sukhov","doi":"10.1109/NAP51885.2021.9568560","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568560","url":null,"abstract":"The work is devoted to the study of the thermal dispergation of polycrystalline silver films, which occurs in the presence of low-melting metal. It was found that the liquid phase of lead or bismuth promotes the rapid decay of an initially continuous film into separate islands. In this case, one-component silver films of the same thickness remain continuous up to higher temperatures. The activation energy of the dewetting process, estimated near the melting temperature of the low-melting component, is 0.5 eV and 0.1 eV for Pb/Ag and Bi/Ag films, respectively. The values obtained are significantly lower than the typical values of the activation energy for solidphase diffusion. This indicates the important role of the liquid-phase mass transfer in the dispergation of Pb/Ag and Bi/Ag films.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84797248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Concentrations of GdYVO4:Eu3+ Nanoparticles Alter the State of White Blood Cell Membranes by Increasing Their Microviscosity 高浓度的GdYVO4:Eu3+纳米颗粒通过增加白细胞膜的微粘度来改变其状态
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568585
A. Tkachenko, A. Onishchenko, V. Prokopyuk, S. Yefimova, V. Klochkov, P. Maksimchuk, N. Kavok, Y. Posokhov
{"title":"High Concentrations of GdYVO4:Eu3+ Nanoparticles Alter the State of White Blood Cell Membranes by Increasing Their Microviscosity","authors":"A. Tkachenko, A. Onishchenko, V. Prokopyuk, S. Yefimova, V. Klochkov, P. Maksimchuk, N. Kavok, Y. Posokhov","doi":"10.1109/NAP51885.2021.9568585","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568585","url":null,"abstract":"Aim. To evaluate the effects of GdYVO4:Eu3+ nanoparticles on the state of leukocyte cell membranes upon direct exposure.Materials and methods. The membranotropic fluorescent probe 2-(2’-OH-phenyl)-5-(4’-biphenyl)-1,3-oxazole was incubated directly with leukocyte suspensions obtained from blood treated directly with different concentrations of GdYVO4:Eu3+ nanoparticles (0 μg/ml, 20 μg/ml, 40 μg/ml, 80 μg/ml) during 24 h. The fluorescence of normal and tautomeric forms of the probe was registered using a FL8500 Fluorescence Spectrophotometer (Perkin Elmer, USA).Results. Our findings indicate that the statistically significant elevation in values of the tautomeric form fluorescence intensity-to-normal form fluorescence intensity ratio (IT*/IN*) was observed only for suspensions with the highest concentration of nanoparticles used, while at low concentrations nanoparticles did not alter the state of phospholipid bilayer in the region of membranes where the probe locates.Conclusions. Low concentrations of GdYVO4:Eu3+ nanoparticles don’t alter the lipid order of leukocyte cell membranes, while their high concentrations promote an increase in lipid order suggesting a decrease in fluidity and an increase in microviscosity of the area of phospholipid bilayer where the probe locates.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"12 1","pages":"NRA05-1-NRA05-4"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84922413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explanation of Giant Magnetoresistance Effect in Magnetic Co/Cu/Co Sandwiches 磁性Co/Cu/Co夹层中巨磁阻效应的解释
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568390
L. Dekhtyaruk, Y. Shkurdoda, Yu.M. Shabelnyk, A. Saltykova, A. Chornous, A. P. Kharchenko, V. Virchenko
{"title":"Explanation of Giant Magnetoresistance Effect in Magnetic Co/Cu/Co Sandwiches","authors":"L. Dekhtyaruk, Y. Shkurdoda, Yu.M. Shabelnyk, A. Saltykova, A. Chornous, A. P. Kharchenko, V. Virchenko","doi":"10.1109/NAP51885.2021.9568390","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568390","url":null,"abstract":"Using a two-current model [1], [2] and the theory of dimensional effects [3], [4], a qualitative analysis of the giant magnetoresistance effect in a three-layer magnetically ordered film (sandwich), which is quantitatively characterized by a magnetoresistance ratio (MRR) $delta$, was presented. It was shown that in the region of small thickness of the magnetic covering layer, in comparison with the thickness of the basic metal layer and the non-magnetic layer, the MRR of the conductor increased, while in the opposite region of the thickness of the magnetic covering layer, the opposite trend is observed, namely, the value of $delta$ decreased. In the case when the thickness of the magnetic covering layer of the metal coincided with the total thickness of the basic magnetic layer and the non-magnetic layer, the MRR reached its maximum value due to the absence of a shunt effect.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81896051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Light-trapping with Conformal ALD Coating of Black Silicon by High-k Metal Oxides 高钾金属氧化物增强黑硅保形ALD涂层的光捕获
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568530
K.G. Ayvazyan, M. V. Katkov, M. Lebedev, G. Ayvazyan
{"title":"Enhanced Light-trapping with Conformal ALD Coating of Black Silicon by High-k Metal Oxides","authors":"K.G. Ayvazyan, M. V. Katkov, M. Lebedev, G. Ayvazyan","doi":"10.1109/NAP51885.2021.9568530","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568530","url":null,"abstract":"We present investigations of optical properties of black silicon (b-Si) nanostructures passivated with several high-k metal oxides (Al<inf>2</inf> O<inf>3</inf>, TiO<inf>2</inf>, HfO<inf>2</inf> and Sc<inf>2</inf> O<inf>3</inf>), obtained by atomic layer deposition (ALD) method. The reflectivity was studied using the finite difference time domain (FDTD) method as well as experimentally, where Si wafers was structured by reactive ion etching method for b-Si fabrication. Modeling and measurements show improvements in the antireflection properties of thin-film/b-Si nanostructures over a wide range of light wavelengths. TiO<inf>2</inf>, HfO<inf>2</inf> and Sc<inf>2</inf> O<inf>3</inf> films provide a good alternative to Al<inf>2</inf> O<inf>3</inf> as passivating materials and antireflection coatings.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78162966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Temperature Annealing on Structural and Substructural Properties of Heterojunction ZnO / Cu2ZnSnS4 Obtained by Spraying Nanoinks 温度退火对喷涂纳米油墨制备的ZnO / Cu2ZnSnS4异质结结构和亚结构性能的影响
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568597
Maksym Yermakov, O. Dobrozhan, S. Kakherskyi, R. Pshenychnyi, A. Opanasyuk
{"title":"Influence of Temperature Annealing on Structural and Substructural Properties of Heterojunction ZnO / Cu2ZnSnS4 Obtained by Spraying Nanoinks","authors":"Maksym Yermakov, O. Dobrozhan, S. Kakherskyi, R. Pshenychnyi, A. Opanasyuk","doi":"10.1109/NAP51885.2021.9568597","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568597","url":null,"abstract":"In this work, a multilayer structure was obtained using ZnO and Cu2 ZnSnS4 (CZTS) inks on a molybdenum substrate by spraying. The obtained samples were annealed in Argon for 10 and 60 min at temperatures of 250°C, 450°C and 550°C. Structural and substructural characteristics were studied by X-ray diffraction. Due to this, the influence of temperature and annealing time on the sizes of coherent scattering regions (CSR), the level of microdeformations and the lattice parameters of the obtained samples were investigated. Based on the study, the optimal annealing conditions in Argon were determined to obtain multilayer structures using ZnO and Cu2ZnSnS4 materials for use in solar energy.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"38 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78888304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZIF-67 Derived Co3S4/WO3 Composites as a Negative Electrode for Hybrid Supercapacitor Application ZIF-67衍生Co3S4/WO3复合材料作为混合超级电容器负极的应用
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568599
Vishal Shrivastav, S. Sundriyal, U. Tiwari, A. Deep
{"title":"ZIF-67 Derived Co3S4/WO3 Composites as a Negative Electrode for Hybrid Supercapacitor Application","authors":"Vishal Shrivastav, S. Sundriyal, U. Tiwari, A. Deep","doi":"10.1109/NAP51885.2021.9568599","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568599","url":null,"abstract":"The new approach to synthesize porous Co<inf>3</inf>S<inf>4</inf> nanoparticles derived from ZIF-67 polyhedrons decorated with WO<inf>3</inf> rectangular sheets is demonstrated. Furthermore, the composite material is employed as a negative electrode for high energy density supercapacitor application. The one pot hydrothermal treatment of ZIF-67 with WO<inf>3</inf> precursor give the Co<inf>3</inf>S<inf>4</inf>/WO<inf>3</inf> composites. The obtained samples are evaluated with cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy tests. The composites delivered the highest specific capacitance of 668 F/g at the current density of 1 A/g in 1 M H<inf>2</inf> SO<inf>4</inf> electrolyte. Addition to this, the composite material remains stable upto 2000 cycles of charging/discharging cycles with 94% capacitance retention. The excellent electrochemical performance is attributed to the synergy between the sheet like WO<inf>3</inf> structure and Co<inf>3</inf>S<inf>4</inf> nanoparticles. The positive electrochemical results of the composites demonstrate its potential or practical hybrid supercapacitor application.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"55 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76748065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo- and Magnetoresistive Properties of Multicomponent Film Materials Based on Magnetic and Non-magnetic Metals 基于磁性和非磁性金属的多组分薄膜材料的热阻和磁阻性能
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568521
M. Vasyukhno, V. S. Klochok, N. I. Shumakova, A. Rylova, I. Protsenko
{"title":"Thermo- and Magnetoresistive Properties of Multicomponent Film Materials Based on Magnetic and Non-magnetic Metals","authors":"M. Vasyukhno, V. S. Klochok, N. I. Shumakova, A. Rylova, I. Protsenko","doi":"10.1109/NAP51885.2021.9568521","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568521","url":null,"abstract":"In the phenomenological approximation, the relations for the differential temperatures coefficient of resistance $left(beta_{T}=frac{partiallnrho}{partial T}right)$ and magnetic coefficient of resistance $left(beta_{B}=frac{partiallnrho}{partial B}right)$, where $rho=sum_{(i)}c_{i}rho_{i}$, for multicomponent high-entropy film alloys (HEA) based on magnetic and non-magnetic metals are obtained. Experimental values $beta_{T},beta_{B}^{MR}$ and $beta_{B}^{GMR}quad$ agree well with the calculations, which allows for the prognosis of the value $beta_{T}$ for normal $beta_{B}^{M/R}$ and for giant $beta_{B}^{GMR}$ magnetoresistance based on experimental data for temperature and magnetic coefficients of individual components.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"34 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75057790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Research on the Characterization of Ag+Cu+B83 Composite Coatings on the Surface of Tin Bronze by Electro-spark Deposition 电火花沉积镀锡青铜表面Ag+Cu+B83复合镀层的研究
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568514
Zhang Zhengchuan, V. Tarelnyk, I. Konoplianchenko, Liu Guanjun, Du Xin, Y. Hua
{"title":"Research on the Characterization of Ag+Cu+B83 Composite Coatings on the Surface of Tin Bronze by Electro-spark Deposition","authors":"Zhang Zhengchuan, V. Tarelnyk, I. Konoplianchenko, Liu Guanjun, Du Xin, Y. Hua","doi":"10.1109/NAP51885.2021.9568514","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568514","url":null,"abstract":"The composite coatings of the tin bronze surface that was formed by alternately Electro-spark deposition (ESD) applying the soft anti-friction material of silver, copper, and babbit B83. The analysis of deposition on mass, roughness, cross-section morphology, surface morphology, thickness, elemental composition, and microhardness of the coatings were investigated by electronic scales, 3D optical profilometers, metallographic microscope, scanning electron microscopy (SEM), energy dispersion spectrum (EDS) and Vickers microhardness tester. The results show that the optimal process parameters of ESD are as follows: voltage is 60V/60V/30V, capacitance is 150μF/150μF/90μF and productive capacity is 3(min/cm2) /3(min/cm2) /4(min/cm2), respectively. Under the optimal parameters, the unit coating mass of the substrate is 54.4 mg/cm2, and the surface roughness of the coating is 32.3μm. The coatings are dense, metallurgical fusion with the substrate, and under the optimal parameters, the thickness of the coatings is about 100 μm. The elemental composition of the three characteristic regions (smooth surface, rough surface, and pore) on the surface of the composite coating varies significantly due to the different production modes. The hardness distribution from the coating surface to the substrate increases first, then decreases, and then increases gradually. The surface microhardness of the composite coatings is 29 HV0.01, which is about 82% lower than that of the tin bronze substrate (161 HV0.01).","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"30 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90298819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty Quantification of Charge Transfer through a Nanowire Resonant-Tunneling Diode with an ADHIE-FDTD Method 用ADHIE-FDTD方法对纳米线谐振隧道二极管电荷传递的不确定度进行量化
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568552
P. Decleer, D. Vande Ginste
{"title":"Uncertainty Quantification of Charge Transfer through a Nanowire Resonant-Tunneling Diode with an ADHIE-FDTD Method","authors":"P. Decleer, D. Vande Ginste","doi":"10.1109/NAP51885.2021.9568552","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568552","url":null,"abstract":"The influence of barrier thickness variability on the charge transfer characteristics of an InP/InAs/InP nanowire resonant-tunneling diode is studied. The transmission probability through the diode is calculated by solving the time-dependent effective-mass Schrödinger equation with the Alternating-Direction Hybrid Implicit-Explicit (ADHIE) Finite-Difference Time-Domain (FDTD) method. This recently developed method is tailored towards multiscale problems and thus allows for a much faster evaluation of the transmission probability compared to the commonly used leapfrog FDTD method. Accurate and efficient modeling of small geometric features with the ADHIE-FDTD method now facilitates the development of a robust Monte Carlo method to assess the significant influence of the thickness of the barriers on the transmission probability and the current-voltage characteristic.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"23 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72922592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Properties of MagnetoBiexciton in Ellipsoidal Quantum Dot 椭球量子点中磁双激子的光学性质
2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) Pub Date : 2021-09-05 DOI: 10.1109/NAP51885.2021.9568545
Y. Bleyan
{"title":"Optical Properties of MagnetoBiexciton in Ellipsoidal Quantum Dot","authors":"Y. Bleyan","doi":"10.1109/NAP51885.2021.9568545","DOIUrl":"https://doi.org/10.1109/NAP51885.2021.9568545","url":null,"abstract":"The theoretical investigation of magnetobiexciton in ellipsoidal quantum dot is done in the presence of the magnetic field in the framework of the variation method. The magnetobiexciton recombination energy from the magnetic field value is calculated. The magnetobiexciton oscillator strength is considered as a function of the magnetic field value. Finally, the magnetobiexciton linear absorption coefficient for the different magnetic field values and different geometrical parameters is computed.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"32 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77340072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信